Skip to main content

Microbial Fuel Cells for Wastewater Treatment

  • Chapter
  • First Online:

Abstract

Disposal of untreated wastewater directly into the water is obnoxious to the environment and human health. Current methods commonly used to treat wastewater include activated sludge process and anaerobic treatment which are energy and cost-intensive processes. These processes are energy as well as cost-intensive and generate pollutants including greenhouse gases and other harmful byproducts that need further disposal. Thus, intensive efforts are being made to find sustainable and efficient treatment systems. Direct transformation of the waste substrate into clean power or high-worth energy is perceived as a superior choice to dispose of the issues in ordinary wastewater management frameworks. Natural processes that convert the chemical energy of wastewater into bioelectrical energy are known as bioelectro-substance frameworks. This energy can be separated as bioelectricity through Microbial fuel cells (MFCs) or as important biofuels like ethanol, methane, H2, and H2O2 if there is the presence of microbial electrolysis cells. The present chapter discusses different aspects of MFCs that are important for wastewater treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aelterman P, Babaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  PubMed  Google Scholar 

  • Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101(2):469–475

    Article  CAS  PubMed  Google Scholar 

  • Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sust Energ Rev 31:158–173

    Article  CAS  Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021a) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41(3):317–338

    Article  PubMed  Google Scholar 

  • Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S (2021b) Binding interaction of glyphosate oxidoreductase and C-P lyase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 409(5):124927

    Article  CAS  PubMed  Google Scholar 

  • Bilfinger JC, Byrd JN, Dudley BL, Ringeisen BR (2008) Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23(6):820–826

    Article  Google Scholar 

  • Borole AP, Hamilton CY (2010) Energy production from food industry wastewaters using bioelectrochemical cells. In: Emerging environmental technologies, vol II. Springer, pp 97–113

    Google Scholar 

  • Butti SK, Velvizhi G, Sulonen MLK, Haavisto JM, Koroglu EO, Cetinkaya AF (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sustain Energy Rev 53:462–476

    Article  CAS  Google Scholar 

  • Cheng X, He L, Lu HW, Chen YW, Ren LX (2016) Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. J Hydrol 540:412–422

    Article  CAS  Google Scholar 

  • Clauwaert P, Aelterman P, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913

    Article  CAS  PubMed  Google Scholar 

  • Cusick RD, Logan BE (2012) Phosphate recovery as struvite within a single-chamber microbial electrolysis cell. Bioresour Technol 107:110–115

    Article  CAS  PubMed  Google Scholar 

  • Dallas P, Georgakilas V (2015) Interfacial polymerization of conductive polymers: generation of polymeric nanostructures in a 2-D space. Adv Colloid Inter 224:46–61

    Article  CAS  Google Scholar 

  • Debbarma P, Raghuwanshi S, Singh J, Suyal DC, Zaidi MGH, Goel R (2017) Comparative in situ biodegradation studies of polyhydroxybutyrate film composites. 3Biotech 7(178):1–9. https://doi.org/10.1007/s13205-017-0789-3

    Article  Google Scholar 

  • Desloover J, Arends JA, Hennebel T, Rabaey K (2012) Operational and technical considerations for microbial electrosynthesis. Biochem Soc Trans 40(6):1233

    Article  CAS  PubMed  Google Scholar 

  • Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196:1171–1177

    Article  CAS  Google Scholar 

  • Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  PubMed  Google Scholar 

  • Du FZ, Li ZL, Yang SQ, Xie BZ, Liu H (2011) Electricity generation directly using human feces wastewater for life support system. Acta Astronaut 68:1537–1547

    Article  CAS  Google Scholar 

  • Fan Y, Han SK, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5(8):8273–8280

    Article  CAS  Google Scholar 

  • Fang Z, Song HL, Cang N, Li XN (2015) Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens Bioelectron 68:135–141

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78(5):873–880

    Article  CAS  PubMed  Google Scholar 

  • Fraiwan A, Choi S (2016) A stackable, two-chambered, paper-based microbial fuel cell. Biosens Bioelectron 83:27–32

    Article  CAS  PubMed  Google Scholar 

  • Ge Z, Zhang F, Grimaud J, Hurst J, He Z (2013) Long-term investigation of microbial fuel cells treating primary sludge or digested sludge. Bioresour Technol 136:509e514

    Article  Google Scholar 

  • Gohil A, Nakhla G (2006) Treatment of food industry waste by bench-scale up-flow anaerobic sludge blanket-anoxic-aerobic system. Water Environ Res 974–985

    Google Scholar 

  • Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596–604

    Article  CAS  PubMed  Google Scholar 

  • Gude VG (2016) Wastewater treatment in microbial fuel cells–an overview. J Clean Prod 122:287–307

    Article  CAS  Google Scholar 

  • He Z, Wagenr N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212–5217

    Article  CAS  PubMed  Google Scholar 

  • He L, Huang GH, Lu HW (2010) A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design-Part I. Model development. J Hazard Mater 176(1–3):521–526

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann RA, Garcia ML, Veskivar M, Karim K, Al-Dahhan MH, Angenent LT (2008) Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnol Bioeng 100(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Hu Z (2008) Electricity generation by a baffle-chamber membrane-less microbial fuel cell. J Power Sources 179(1):27–33

    Article  CAS  Google Scholar 

  • Huang L, Liu Y, Yu L, Quan X, Chen G (2015) A new clean approach for production of cobalt dihydroxide from aqueous Co (II) using oxygen-reducing biocathode microbial fuel cells. J Clean Prod 86:441–446

    Article  CAS  Google Scholar 

  • Ichihashi O, Hirooka K (2012) Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour Technol 114:303–307

    Article  CAS  PubMed  Google Scholar 

  • Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS et al (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem 39:1007–1012

    Article  CAS  Google Scholar 

  • Janicek A, Fan Y, Liu H (2014) Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels 5(1):79–92

    Article  CAS  Google Scholar 

  • Janicek A, Fan Y, Liu H (2015) Performance and stability of different cathode base materials for use in microbial fuel cells. J Power Sources 280:159–165

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011) Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol 29:32–37

    Article  CAS  Google Scholar 

  • Kargi F, Eker S (2007) Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu-Au electrodes. J Chem Technol Biotechnol 82:658–662

    Article  CAS  Google Scholar 

  • Kelly PT, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kim JR, Dec J, Bruns MA, Logan BE (2008) Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol 74:2540–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar AK, Reddy MV, Chandrasekhar K, Srikanth S, Mohan SV (2012) Endocrine disruptive estrogens role in electron transfer: bio-electrochemical remediation with microbial mediated electrogenesis. Bioresour Technol 104:547e556

    Google Scholar 

  • Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42(6):1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Kong L, Liu H (2008) Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour Technol 99:1650–1655

    Article  CAS  PubMed  Google Scholar 

  • Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39(14):5488–5493

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J, Zhang S, Su Z (2009) Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon-and protein-rich substrates. Biochem Eng J 45(3):185–191

    Article  CAS  Google Scholar 

  • Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley

    Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Ann Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497e508

    Article  Google Scholar 

  • Lu N, Zhou B, Deng LF, Zhou SG, Ni JR (2009) Starch processing wastewater treatment using a continuous microbial fuel cell with MnO2 cathodic catalyst. J Basic Sci Eng 17:65–73

    Google Scholar 

  • Madigan MT, Martinko JM, Stahl D, Parker J (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Matesanz AI, Albacete P, Souza P (2016) Synthesis and characterization of a new bioactive mono(thiosemicarbazone) ligand based on 3,5-diacetyl-1,2,4-triazoldiketone and its palladium and platinum complexes. Polyhedron 109:161–165

    Article  CAS  Google Scholar 

  • Mathuriya AS, Yakhmi JV (2014) Microbial fuel cells to recover heavy metals. Environ Chem Lett 12(4):483–494

    Article  CAS  Google Scholar 

  • Mercuri EGF, Kumata AYJ, Amaral EB, Vitule JRS (2016) Energy by microbial fuel cells: scientometric global synthesis and challenges. Renew Sustain Energ Rev 65:832–840

    Article  Google Scholar 

  • Min B, Cheng SA, Logan BE (2005a) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686

    Article  CAS  PubMed  Google Scholar 

  • Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005b) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  PubMed  Google Scholar 

  • Mohan SV, Mohanakrishna G, Sarma PN (2008) Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environ Sci Technol 42:8088–8094

    Article  CAS  Google Scholar 

  • Mohan SV, Mohanakrishna G, Velvizhi G, Babu VL, Sarma PN (2010) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51(1–2):32–39

    Article  Google Scholar 

  • Nielsen ME, Reimers C, Stecher HA (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41:7895–7900

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Alvarez Gallego Y, Diels L, Vanbroekhoven K (2011) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sustain Energy Rev 15:1305–1313

    Article  CAS  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292

    Article  CAS  Google Scholar 

  • Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour Technol 100:269–274

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Microbiol 23:291–298

    CAS  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Ren LX, He L, Lu HW, Chen YZ (2016) Monte Carlo-based interval transformation analysis for multi-criteria decision analysis of groundwater management strategies under uncertain naphthalene concentrations and health risks. J Hydrol 539:468–477

    Article  CAS  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Biotecnología del medioambiente: Principios yaplicaciones. McGraw-Hill Interamericana de Espa~na

    Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    Article  CAS  PubMed  Google Scholar 

  • Santoro C, Ieropoulos I, Greenman J, Cristiani P, Vadas T, Mackay A (2013) Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. Int J Hydrog Energ 38:11543–11551

    Article  CAS  Google Scholar 

  • Seo HN, Woo JL, Tae SH, Doo HP (2009) Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with aceramic membrane and cellulose acetate film. J Microbiol Biotechnol 19:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Malaviya P (2016) Irrigational impact of untreated and treated brewery-distillery effluent on seed germination of marigold (Tagetes erecta L.). J Environ Biol 37(1):115

    CAS  PubMed  Google Scholar 

  • Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K (2008) Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 80:325–330

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Smyth BM, Murphy JD (2010) A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew Sustain Energy Rev 14:277–288

    Article  CAS  Google Scholar 

  • Sivasankaran A, Sangeetha D, Ahn YH (2016) Nanocomposite membranes based on sulfonated polystyrene ethylene butylene polystyrene (SSEBS) and sulfonated SiO2 for microbial fuel cell application. Chem Eng J 289:442–451

    Article  CAS  Google Scholar 

  • Tee PF, Abdullah MO, Tan IAW, Rashid NKA, Amin MAM, Nolasco-Hipolito C (2016) Review on hybrid energy systems for wastewater treatment and bio-energy production. Renew Sust Energ Rev 54:235–246

    Article  CAS  Google Scholar 

  • Ting CH, Lee DJ (2007) Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. Int J Hydrog Energy 32:677–682

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Velvizhi G, Annie Modestra J, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energ Rev 40:779–797

    Article  CAS  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42(12):3013–3024

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Han JI (2009) A single chamber stackable microbial fuel cell with air cathode. Biotechnol Lett 31:387–393

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ren ZJ (2014) Bioelectrochemical metal recovery from wastewater: a review. Water Res 66:219–232

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Liang P, Cao X, Huang X (2011) Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Bioresour Technol 102(22):10431–10435

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Jiao S, Ma M, Peng S (2020) Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environ Sci Pollut Res 27(7):6749–6764

    Article  CAS  Google Scholar 

  • Xiao L, He Z (2014) Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sustain Energ Rev 37:550–559

    Article  CAS  Google Scholar 

  • Xiao B, Yang F, Liu J (2011) Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. J Hazard Mater 189:444–449

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhao Y, Doherty L, Hu Y, Hao X (2016) The integrated processes for wastewater treatment based on the principle of microbial fuel cells (MFCs): a review. Crit Rev Environ Sci Technol 46(1):60e-91

    Article  Google Scholar 

  • Yang Y, Sun G, Xu M (2011) Microbial fuel cells come of age. J Chem Technol Biotechnol 86(5):625–632

    Article  CAS  Google Scholar 

  • Yokoyama H, Ohmori H, Ishida M, Waki M, Tanaka Y (2006) Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure. Anim Sci J 77:634–638

    Article  CAS  Google Scholar 

  • Zhang B, Zhao H, Zhou S, Shi C, Wang C, Ni J (2009) A novel UASB–MFC–BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100(23):5687–5693

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013) In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol 136:316e321

    Article  Google Scholar 

  • Zhang L, Wang J, Fu G, Zhang Z (2020) Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment. J Clean Prod 276:123203

    Article  CAS  Google Scholar 

  • Zhuang L, Zhou S (2009) Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem Commun 11:937–940

    Article  CAS  Google Scholar 

  • Zornoza R, Moreno-Barriga F, Acosta JA, Muñoz MA, Faz A (2016) Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144:122–130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjan, P. et al. (2022). Microbial Fuel Cells for Wastewater Treatment. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_3

Download citation

Publish with us

Policies and ethics