Skip to main content

Role of Biochar in Wastewater Treatment and Sustainability

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants

Abstract

In recent years, the increase in urbanization and fast growth of industrialization seriously threatened the ecological environment and human health, by the addition of different organic and inorganic pollutants including heavy metals viz. As (III), Cu (II), Cr (VI), Hg (II), Pb (II), etc. in the wastewater. Adsorption is an effective and economically viable way to remove pollutants from wastewater. Biochar, a class of famous carbon material, incredible potential, widely available, eco-friendly, and low-cost material shows an efficient elimination of the contaminants by adsorption method. This paper summarizes the different sources of biochar, application of biochar, and potential of biochar in the reclamation of wastewater by removing TOC and CECs. This review also summarizes the removal mechanism of organic and inorganic pollutants. Recommendations for future aspects on biochar as an excellent source to get rid of organic and inorganic contaminants are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Rehman MZ, Ibrahim M, Arshad M, Qayyum M (2018) Biochar application increased the growth and yield and reduced cadmium in drought-stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148:825–833

    Article  CAS  Google Scholar 

  • Banerjee S, Mukherjee S, LaminKa-ot A, Joshi SR, Mandal T, Halder G (2016) Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics, and cost estimation. J Adv Res 7(5):597–610. https://doi.org/10.1016/j.jare.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beesley L, Jiménez EM, Eyles JLG (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021a) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41(3):317–338

    PubMed  Google Scholar 

  • Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S (2021b) Binding interaction of glyphosate oxidoreductase and C-P lyase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 5(409):124927

    Article  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang D, Zhang H, Ghosh S, Pan B (2017) Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Sci Total Environ 579:598–605

    Article  CAS  Google Scholar 

  • Cui X, Hao H, Zhang C, He Z, Yang X (2016) Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Sci. Total Environ 539:566–575

    Article  CAS  Google Scholar 

  • Dash B, Sahu N, Singh AK, Gupta SB, Soni R (2021) Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil. Folia Microbiol 66:189–196

    Article  CAS  Google Scholar 

  • De Ridder M, De Jong S, Polchar J, Lingemann S (2012) Risks and opportunities in the global phosphate rock market: robust strategies in times of uncertainty. Hague Centre for Strategic Studies, Netherlands. https://library.wur.nl/WebQuery/titel/2016340

  • Devi P, Saroha AK (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525e531

    Article  Google Scholar 

  • Fagbohungbe MO, Herbert BM, Hurst L, Ibeto CN, Li H, Usmani SQ, Semple KT (2017) The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag 61:236–249. https://doi.org/10.1016/j.wasman.2016.11.028

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Zhu L (2017) Sorption of phenanthrene to biochar modified by base. Front Environ Sci Eng 12:1–7

    Article  Google Scholar 

  • Ghezzehei TA, Sarkhot DV, Berhe AA (2014) Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth 5:953e962

    Article  Google Scholar 

  • Giri K, Rai JPN, Pandey S, Mishra G, Kumar R, Suyal DC (2017a) Performance evaluation of isoproturon-degrading indigenous bacterial isolates in soil microcosm. Chem Ecol 33(9):817–825. https://doi.org/10.1080/02757540.2017.1393535

    Article  CAS  Google Scholar 

  • Giri K, Suyal DC, Mishra G, Pandey S, Kumar R, Meena DK, Rai JPN (2017b) Biodegradation of isoproturon by Bacillus pumilus K1 isolated from foothill agroecosystem of North West Himalaya. Proc Natl Acad Sci India Sect B Biol Sci 87(3):839–848. https://doi.org/10.1007/s40011-015-0667-x

    Article  CAS  Google Scholar 

  • Hussain A, Maitra J, Khan KA (2017) Development of biochar and chitosan blend for heavy metalsuptake from synthetic and industrial wastewater. Appl Water Sci 7(8):4525–4537

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem Eng J 236:39–46. https://doi.org/10.1016/j.cej.2013.09.074

    Article  CAS  Google Scholar 

  • Jung KW, Ahn KH (2016) Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: application of a novel combined electrochemical modification method. Bioresour Technol 200:1029–1032

    Article  CAS  Google Scholar 

  • Kookana RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Soil Res 48(7):627–637

    Article  CAS  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    Article  CAS  Google Scholar 

  • Kumar P, Dash B, Suyal DC, Gupta SB, Singh AK, Chowdhury T, Soni R (2021) Characterization of Arsenic-Resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol. https://doi.org/10.1007/s00284-021-02602-w

  • Li H, Cao Y, Zhang D, Pan B (2018) pH-dependent KOW provides new insights into understanding the adsorption mechanism of ionizable organic chemicals on carbonaceous materials. Sci Total Environ 618:269–275. https://doi.org/10.1016/j.scitotenv.2017.11.065

    Article  CAS  PubMed  Google Scholar 

  • Lim IM, Boateng AA, Klasson KT (2010) Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts. J Chem Technol Biotechnol 85:1515–1521. https://doi.org/10.1002/jctb.2461

    Article  CAS  Google Scholar 

  • Liu P, Ptacek CJ, Blowes DW, Landis RC (2016) Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy. J Hazard Mater 308:233–242

    Article  CAS  Google Scholar 

  • Lu K, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan G, Chen X, Zhang X, Liu D, Song Z, Liu X, Wang H (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manag 186(2):285–292

    Article  CAS  Google Scholar 

  • Mandal A, Singh N (2017) Optimization of atrazine and imidacloprid removal from water using biochars: designing single or multi-staged batch adsorption systems. Int J Hyg Environ Health 220:637e645

    Article  Google Scholar 

  • Mondal S, Aikat K, Halder G (2016) Ranitidine hydrochloride sorption onto superheated steam activated biochar derived from mung bean husk in fixed bed column. J Environ Chem Eng 4(1):488–497. https://doi.org/10.1016/j.jece.2015.12.005

    Article  CAS  Google Scholar 

  • Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1):83–94. https://doi.org/10.1016/j.carbon.2003.09.022

    Article  CAS  Google Scholar 

  • Nelissen V, Ruysschaert G, Müller-Stöver D, Bodé S, Cook J, Ronsse F, Shackley S, Boeckx P, Haugard-Nielsen H (2014) Short-term effect of feedstock and pyrolysis temperature on biochar characteristics, soil and crop response in temperate soils. Agronomy 4:52–73

    Article  Google Scholar 

  • Oh GH, Park CR (2002) Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel 81(3):327–336. https://doi.org/10.1016/S0016-2361(01)00171-5

    Article  CAS  Google Scholar 

  • Park J, Hung I, Gan Z, Rojas OJ, Lim KH, Park S (2013) Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour Technol 149:383–389

    Article  CAS  Google Scholar 

  • Poonam BSK, Kumar N (2018) Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Appl Water Sci 8:119

    Article  Google Scholar 

  • Puga AP, Abreu CA, Melo LCA, Beesley L (2016) Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manag 159:86–93. https://doi.org/10.1016/j.jenvman.2015.05.036

    Article  CAS  Google Scholar 

  • Qiao K, Tiana W, Baia J, Dong J, Zhao J, Gong X, Liu S (2018) Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution. Ecotoxicol Environ Saf 149:80–87

    Article  CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1–3):70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  • Rambabu N, Rao BVSK, Surisetty VR, Das U, Dalai AK (2015) Production, characterization, and evaluation of activated carbons from de-oiled canola meal for environmental applications. Ind Crop Prod 65:572–581. https://doi.org/10.1016/j.indcrop.2014.09.046

    Article  CAS  Google Scholar 

  • Rehman MZ, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, Sabir M, Ahmad HR, Ok YS (2016) Contrasting effects of biochar, compost and farmmanure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol Environ Saf 133:218–225

    Article  Google Scholar 

  • Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Pérez M (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147

    Article  CAS  Google Scholar 

  • Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B (2011) Sorption of bisphenol A, 17α-Ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour Technol 102:5757–5763. https://doi.org/10.1016/j.biortech.2011.03.038

    Article  CAS  PubMed  Google Scholar 

  • Wathukarage A, Herath I, Iqbal MCM, Vithanage M (2017) Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environ Geochem Health 41(4):1647–1661

    Article  Google Scholar 

  • Wei D, Ngo HH, Guo W, Xu W, Du B, Khan MS, Wei Q (2018) Biosorption performance evaluation of heavy metal onto aerobic granular sludge-derived biochar in the presence of effluent organic matter via batch and fluorescence approaches. Bioresour Technol 249:410–416

    Article  CAS  Google Scholar 

  • Yang G, Wu L, Xian Q, Shen F, Wu J, Zhang Y (2016) Removal of congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. PLoS One 11(5):e0154562

    Article  Google Scholar 

  • Zhu S, Huang X, Ma F, Wang L, Duan X, Wang S (2018) Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environ Sci Technol 52:8649–8658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, B., Srivastava, A., Suyal, D.C., Kumar, R., Soni, R. (2022). Role of Biochar in Wastewater Treatment and Sustainability. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_15

Download citation

Publish with us

Policies and ethics