Skip to main content

Forestry and Hunting

  • Chapter
  • First Online:

Abstract

This chapter briefly introduces forestry and describes the differences between natural forests and various forms of human-managed forest. This chapter also introduces tree species most commonly found in the European and North American forestry, describes the basic steps of forestry technologies, and explains how various ways of forest management affect various components of ecosystem including biodiversity, nutrient cycling energy flows soils, water, etc. Special attention is paid to interaction of forestry and ongoing global change. In particular, this chapter deals with the following question: What are the potentials and risks of using forests plantation to mitigate global change? It also deals with the basic difference between human hunters and natural predators and introduces the major principles of hunting regulations. Finally, it explains the effect of hunting on game population and other component of ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert, M., Nagel, R. V., Nuske, R. S., Sutmöller, J., & Spellmann, H. (2017). Tree species selection in the face of drought risk – Uncertainty in forest planning. Forest, 8, 363.

    Google Scholar 

  • Allen, M., Brunner, A., Antón-Fernández, C., & Astrup, R. (2020). The relationship between volume increment and stand density in Norway spruce plantations. Forestry. https://doi.org/10.1093/forestry/cpaa020

  • Armbruster, M., Kohler, H., & Feger, K. H. (2000). Chemical composition of first-order forest streams in the upper Black Forest – Variability related to runoff dynamics and soil liming. Forstwissenschaftliches Centralblatt, 119(5), 249–262.

    CAS  Google Scholar 

  • Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J. C., Keller, M., & Silva, J. N. (2005). Selective logging in the Brazilian Amazon. Science, 310(5747), 480–482.

    CAS  Google Scholar 

  • Assmann, E. (1961). Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft.

    Google Scholar 

  • Báldi, A. (1996). Edge effects in tropical versus temperate forest bird communities: Three alternative hypotheses for the explanation of differences. Acta Zoologica Academiae Scientiarum Hungaricae, 42(3), 163–172.

    Google Scholar 

  • Bartoš, L. (1993). Sika red deer hybridization – Recent status and main problems. Development in Animal and Veterinary Sciences, 26, 415–416.

    Google Scholar 

  • Bayle, G. K. (2019). Ecological and social impacts of eucalyptus tree plantation on the environment. Journal of Biodiversity Conservation and Bioresource Management, 5, 93–104. https://doi.org/10.3329/jbcbm.v5i1.42189

    Article  Google Scholar 

  • Betts, R. A. (2000). Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187–190.

    CAS  Google Scholar 

  • Bharati, L., Lee, K. H., Isenhart, T. M., & Schultz, R. C. (2002). Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agroforestry Systems, 56, 249–257.

    Google Scholar 

  • Bieber, C., & Ruf, T. (2005). Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the managementof pulsed resource consumers. Journal of Applied Ecology, 42, 1203–1213.

    Google Scholar 

  • BIO Intelligence Service. (2011). Disturbances of EU forests caused by biotic agents. Final report prepared for European Commission, BIO Intelligence Service.

    Google Scholar 

  • Bohn, U., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T., Schlüter, H., & Weber, H. (2003). Map of the natural vegetation of Europe. Federal Agency for Nature Conservation (BfN).

    Google Scholar 

  • Brockman, C. F. (1968). Trees of North America: A guide to field identification. St Martins Press.

    Google Scholar 

  • Buchwald, E. (2005, January 11–19). A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation. In Proceedings. Third expert meeting on harmonizing forest-related definitions. Edition: ftp://ftp.fao.org/docrep/fao/008/j4959e/j4959e.pdf. Chapter: Annex VIPublisher: FAO, Editors: FAO, Anonymous.

  • Calder, I., Hofer, T., Vermont, S., & Warren, P. (2007). Towards a new understanding of forests and water. Unasylva, 58, 3–10.

    Google Scholar 

  • Cambi, M., Certini, G., Neri, F., & Marchi, E. (2015). The impact of heavy traffic on forest soils: A review. Forest Ecology and Management, 338, 124–138.

    Google Scholar 

  • Cejpek, J., Kuráž, V., Vindušková, O., & Frouz, J. (2017). Water regime of reclaimed and unreclaimed post-mining sites. Ecohydrology, 11, e1911.

    Google Scholar 

  • Chaber, A. L., Allebone-Webb, S., Lignereux, Y., Cunningham, A. A., & Rowcliffe, J. M. (2010). The scale of illegal meat importation from Africato Europe via Paris. Conservation Letters, 3(5), 317–321.

    Google Scholar 

  • Chaudhary, A., Burivalova, Z., Koh, L. P., & Hellweg, S. (2016). Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Scientific Reports, 6, 23954.

    CAS  Google Scholar 

  • Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x

    Article  Google Scholar 

  • Chimeli, A. B., & Soares, R. R. (2017). The use of violence in illegal markets: Evidence from mahogany trade in the Brazilian Amazon. American Economic Journal: Applied Economics, 9(4), 30–57.

    Google Scholar 

  • Churchill, S. E. (1993). Weapon technology, prey size selection, and hunting methods in modern hunter-gatherers: Implications for hunting in the palaeolithic and mesolithic. Archeological Papers of the American Anthropological Association, 4, 11–24.

    Google Scholar 

  • Clark, D. A., & Clark, D. B. (1984). Spacing dynamics of a tropical rainforest tree: Evaluation of the Janzen-Connel model. The American Naturalist, 124, 769–788.

    Google Scholar 

  • Connell, J. H. (1970). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In P. J. Den Boer & G. R. Gradwell (Eds.), Dynamics of population. Pudoc.

    Google Scholar 

  • Corre, M. D., Beese, F. O., & Brumme, R. (2003). Soil nitrogen cycle in high nitrogen deposition forest: Changes under nitrogen saturation and liming. Ecological Applications, 13(2), 287–298.

    Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260.

    CAS  Google Scholar 

  • Cresswell, W. (2008). Non-lethal effects of predation in birds. Ibis, 150, 3–17.

    Google Scholar 

  • Cunningham, S. A., Floyd, R. B., & Weir, T. A. (2005). Do Eucalyptus plantations host an insect community similar to remnant Eucalyptus forest? Austral Ecology, 30, 103–117.

    Google Scholar 

  • Da Ronch, F., Caudullo, G., & de Rigo, D. (2016). Pseudotsuga menziesii in Europe: Distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, & A. Mauri (Eds.), European atlas of forest tree species. European Comission.

    Google Scholar 

  • Daniels, R. F., & Burkhart, H. E. (1988). An integrated system of forest stand models. Forest Ecology and Management, 23, 159–177.

    Google Scholar 

  • de Souza, J. G., Schaan, D. P., Robinson, M., et al. (2018). Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nature Communications, 9, 1125.

    Google Scholar 

  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185–190.

    CAS  Google Scholar 

  • Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Klein Goldewijk, K., & Verburg, P. H. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences, 110(20), 7978–7985.

    CAS  Google Scholar 

  • Esper, J., Büntgen, U., Frank, D. C., Nievergelt, D., & Liebhold, A. (2007). 1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society B-Biological Sciences, 274(1610), 671–679.

    Google Scholar 

  • Estes, J. A., & Duggins, D. O. (1995). Sea otters and kelp forest in Alaska: Generality and variation in a community ecological paradigm. Ecological Monographs, 65, 75–100.

    Google Scholar 

  • FAO. (1998a). State of the world plant genetic resourses for food and agriculture. FAO.

    Google Scholar 

  • FAO. (1998b). Integrated coastal area management and agriculture, forestry and fisheries. FAO.

    Google Scholar 

  • FAO. (2010). Global Forest Resources Assessment 2010. FAO.

    Google Scholar 

  • Ferreira, V., Boyero, L., Calvo, C., et al. (2019). A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems, 22, 629–642.

    Google Scholar 

  • Fiedel, S. J. (2005). Man’s best friend – Mammoth’s worst enemy? A speculative essay on the role of dogs in Paleoindian colonization and megafaunal extinction. World Archaeology, 37(1), 11–25.

    Google Scholar 

  • Filková, V., Kolár, T., Rybníček, M., Gryc, V., Vavrčík, H., & Jurčík, J. (2015). Historical utilization of wood in southeastern Moravia (Czech Republic). iForest-Biogeosciences and Forestry, 8(1), 101–107.

    Google Scholar 

  • Foglar-Deinhardstein, A., Piribauer, V. C., & Prem, J. (2015). Sustainable forest management in Austria – Austrian forest report 2015. Republic of Austria, Federal Ministry of Agriculture, Forestry, Environment and Water Management.

    Google Scholar 

  • FOREST EUROPE. (2015). State of Europe’s forests 2015, ministerial conference on the protection of forests in Europe. FOREST EUROPE Liaison Unit.

    Google Scholar 

  • Forestry Agency Japan. (2019). State of Japan’s forests and forest management. Forestry Agency Japan.

    Google Scholar 

  • Franklin, J. F., Berg, D. R., Thornburgh, D. A., & Tappeiner, J. C. (1997). Alternative silvicultural approaches to timber harvesting: Variable retention harvest systems. In K. A. Kohn & J. F. Franklin (Eds.), Creating a forestry for the 21st century: The science of ecosystem management (p. 111). Island Press.

    Google Scholar 

  • Frouz, J. (2018b). Changes of water budget during ecosystem development in post-mining sites at various spatiotemporal scales: The need for controlled systems. In J.-F. Liu & W.-Z. Gu (Eds.), Hydrology of artificial and controlled experiments. IntechOpen.

    Google Scholar 

  • Frouz, J. (2021). Chapter 6: Soil recovery and reclamation of mined lands. In J.-A. Stanturf & M. A. Callaham (Eds.), Soils and landscape restoration (pp. 161–191). Academic Press.

    Google Scholar 

  • Frouz, J., & Franklin, J. A. (2014). Vegetation and soil development in planted pine and naturally regenerated hardwood stands 48 years after mining. Journal American Society of Mining and Reclamation, 3(2). https://doi.org/10.21000/JASMR14020021

  • Frouz, J., & Vindušková, O. (2018). Soil organic matter accumulation in postmining sites: Potential drivers and mechanisms. In M. Á. Munoz & R. Zornoza (Eds.), Soil management and climate change. Effects on organic carbon, nitrogen dynamics and greenhouse gas emissions. Academic Press.

    Google Scholar 

  • Frouz, J., Keplin, B., Pižl, V., Tajovský, K., Starý, J., Lukešová, A., Nováková, A., Balík, V., Háněl, L., Materna, J., Düker, C., Chalupský, J., Rusek, J., & Heinkele, T. (2001). Soil biota and upper soil layers development in two contrasting post-mining chronosequences. Ecological Engineering, 17, 275–284.

    Google Scholar 

  • Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalčík, J., & Řehounková, K. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44, 109–121.

    Google Scholar 

  • Frouz, J., Jílková, V., Cajthaml, T., Pižl, V., Tajovský, K., Háněl, L., Burešová, A., Šimáčková, H., Kolaříková, K., Franklin, J., Nawrot, J., Groninger, J. W., & Stahl, P. D. (2013a). Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil Biology and Biochemistry, 67, 212–225.

    CAS  Google Scholar 

  • Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., Šimáčková, H., & Cepáková, Š. (2013b). Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management, 309, 87–95.

    Google Scholar 

  • Frouz, J., Vobořilová, V., Janoušová, I., Kadochová, Š., & Matějíček, L. (2015a). Spontaneous establishment of late successional tree species English oak (Quercus robur) and European beech (Fagus sylvatica) at reclaimed alder plantation and unreclaimed post mining sites. Ecological Engineering, 77, 1–8.

    Google Scholar 

  • Frouz, J., Dvorščík, P., Vávrová, A., Doušová, O., Kadochová, Š., & Matějíček, L. (2015b). Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecological Engineering, 84, 233–239.

    Google Scholar 

  • Frouz, J., Jílková, V., & Sorvari, J. (2016a). Contribution of wood ants to nutrient cycling and ecosystem functionings. In S. J. A. Robinson & E.J.H. (Eds.), Wood ant ecology and conservation. Cambridge University Press.

    Google Scholar 

  • Frouz, J., Toyota, A., Mudrák, O., Jílková, V., Filipová, A., & Cajthaml, T. (2016b). Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession. Soil Biology and Biochemistry, 99, 75–84.

    CAS  Google Scholar 

  • Frouz, J., Mudrák, O., Reitschmiedová, E., Walmsley, A., Váchová, P., Šimáčková, H., Albrechtová, J., Moradi, J., & Kučera, J. (2018). Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted post mining site development. Journal of Environmental Management, 205, 50–58.

    Google Scholar 

  • Gajic, B., Dugalic, G., Sredojevic, Z., & Tomic, Z. (2008). Effect of different vegetation types on infiltration and soil water retention. Cereal Research Communications, 36, 991–994.

    Google Scholar 

  • Gleason, K. E., Bradford, J. B., Bottero, A., D’Amato, A. W., Fraver, S., Palik, B. J., Battaglia, M. A., Iverson, L., Kenefic, L., & Kern, C. C. (2017). Competition amplifies drought stress in forests across broad climatic and compositional gradients. Ecosphere, 8(7), e01849. https://doi.org/10.1002/ecs2.1849

    Article  Google Scholar 

  • Glutz von Blotzheim, U. N. (2015). Illegal bird hunting in the EU: Discrepancy between written words and effective action. GNOR Info, 123, 18–23.

    Google Scholar 

  • Goded, S., Ekroos, J., Domínguez, J., Azcárate, J. G., Guitián, J. A., & Smith, H. G. (2019). Effects of eucalyptus plantations on avian and herb species richness and composition in North-West Spain. Global Ecology and Conservation, 19, e00690.

    Google Scholar 

  • Gosselin, J., Zedrosser, A., Swenson, J. E., & Pelletier, F. (2015). The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proceedings of the Royal Society B, 282, 20141840.

    Google Scholar 

  • Gray, D. M. (Ed.). (1973). Handbook on the principles of hydrology. Water Information Center.

    Google Scholar 

  • Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–11650.

    CAS  Google Scholar 

  • Grove, A. T., & Rackham, O. (2003). The nature of Mediterranean Europe: An ecological history. Yale University Press.

    Google Scholar 

  • Gustafsson, L., Kouki, J., & Sverdrup –Thygeson, A. (2010). Tree retention as a conservation measure in clear-cut forests of northern Europe: A review of ecological consequences. Scandinavian Journal of Forest Research, 25(4), 295–308.

    Google Scholar 

  • Hamberger, J., & von Carlowitz, H. C. (2013). Sylvicultura oeconomica oder Haußwirthliche Nachricht und Naturmäßige Anweisung zur Wilden Baum-Zucht Gebundene Ausgabe. Oekom.

    Google Scholar 

  • Hames, R. B. (1979). A comparison of the efficiencies of the shotgun and the bow in neotropical forest hunting. Human Ecology, 7, 219–252.

    Google Scholar 

  • Harris, R., Wall, W., & Allendorf, F. (2002). Genetic consequences of hunting: What do we know and what should we do? Wildlife Society Bulletin, 30(2), 634–643.

    Google Scholar 

  • Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V., & Lotsch, A. (2012). Baseline map of carbon emissions from deforestation in tropical regions. Science, 336, 1573–1576.

    CAS  Google Scholar 

  • Hart, T. (2016). Summary of pre-industrial forest condition of English River, Caribou, Black Spruce and Dog River-Matawin Forests, Ontario. Resolution, Forest Product.

    Google Scholar 

  • Heffelfinger, J. R., Geist, V., & Wishart, W. (2013). The role of hunting in North American wildlife conservation. International Journal of Environmental Studies, 70(3), 399–413.

    Google Scholar 

  • Hettelingh, J. P., Posch, M., & Potting, J. (2005). Country-dependent characterisation factors for acidification in Europe – A critical evaluation. International Journal of Life Cycle Assessment, 10(3), 177–183.

    CAS  Google Scholar 

  • Hindar, A., Wright, R. F., Nilsen, P., Larssen, T., & Hogberget, R. (2003). Effects on stream water chemistry and forest vitality after whole-catchment application of dolomite to a forest ecosystem in southern Norway. Forest Ecology and Management, 180, 509–525.

    Google Scholar 

  • Hofmeister, J., Oulehle, F., Krám, P., & Hruška, J. (2008). Loss of nutrients due to litter raking compared to the effect of acidic deposition in two spruce stands, Czech Republic. Biogeochemistry, 88(2), 139–151.

    Google Scholar 

  • Hommeltenberg, J., Schmid, H. P., Drösler, M., & Werle, P. (2014). Can a bog drained for forestry be a stronger carbon sink than a natural bog forest? Biogeosciences, 11, 3477–3493.

    CAS  Google Scholar 

  • Huntley, B. (1993). Species-richness in north-temperate zone forests. Journal of Biogeography, 20, 163–180.

    Google Scholar 

  • IGN. (2019). Le Mémemto inventaire forestier. Institut national de l’information géographique et forestière.

    Google Scholar 

  • INFC. (2009). I caratteri quantitativi 2005 – Parte 1, versione 2. In P. Gasparini, F. De Natale, L. Di Cosmo, C. Gagliano, G. Salvadori, G. Tabacchi, & V. Tosi (Eds.), Inventario nazionale delle foreste e dei serbatoi forestali di carbonio. MiPAAF – Ispettorato Generale Corpo Forestale dello Stato. CRA-MPF.

    Google Scholar 

  • Ingerslev, M. (1997). Effects of liming and fertilization on growth, soil chemistry and soil water chemistry in a Norway spruce plantation on a nutrient-poor soil in Denmark. Forest Ecology and Management, 92, 55–66.

    Google Scholar 

  • Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G. J., Folberth, G., Schlamadinger, B., Hutjes, R. W. A., Ceulemans, R., Schulze, E. D., Valentini, R., & Dolman, A. J. (2003). Europes terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300(5625), 1538–1542.

    CAS  Google Scholar 

  • Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104(940), 940. https://doi.org/10.1086/282687

    Article  Google Scholar 

  • Kabrda, J., & Bičík, I. (2010). Dlouhodobé změny rozlohy lesa v Česku i ve světě. Geografické rozhledy, 20(1), 2–5.

    Google Scholar 

  • Kaplan, J. O., Krumhardt, K. M., & Zimmermann, N. (2009). The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 28, 3016–3034.

    Google Scholar 

  • Král, K., Daněk, P., Janík, D., Krůček, M., & Vrška, T. (2018). How cyclical and predictable are Central European temperate forest dynamics in terms of development phases? Journal of Vegetation Science, 29, 84–97.

    Google Scholar 

  • Krebs, C. J. (1999). Ecological methodology. Benjamin/Cummings.

    Google Scholar 

  • Kreutzweiser, D. P., Hazlett, P. W., & Gunn, J. M. (2008). Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environmental Reviews, 16, 157–179.

    CAS  Google Scholar 

  • Kukla, J., Whitfeld, T., Cajthaml, T., Baldrian, P., Veselá-Šimáčková, H., Novotný, V., & Frouz, J. (2019). The effect of traditional slash-and-burn agriculture on soil organic matter, nutrient content and microbiota in tropical ecosystems of Papua New Guinea. Land Degradation and Development, 1–12.

    Google Scholar 

  • Kuneš, P., Odgaard, B. V., & Gaillard, M.-J. (2011). Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. Journal of Biogeography, 38, 2150–2164.

    Google Scholar 

  • Kuuluvainen, T., Tahvonen, O., & Aakala, T. (2012). Even-aged and uneven-aged forest management in boreal Fennoscandia: A review. Ambio, 41(7), 720–737. https://doi.org/10.1007/s13280-012-0289-y

    Article  Google Scholar 

  • Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A., Ewers, R. M., et al. (2007). Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One, 2(10), e1017. https://doi.org/10.1371/journal.pone.0001017

    Article  Google Scholar 

  • Laurance, W. F., Camargo, J. L., Fearnside, P. M., Lovejoy, T. E., Williamson, G. B., Mesquita, R. C., Meyer, C. F., Bobrowiec, P. E., & Laurance, S. G. (2018). An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews, 93(1), 223–247.

    Google Scholar 

  • Lindemann, W. (1956). Transplantation of game in Europe and Asia. The Journal of Wildlife Management, 20(1), 68–70.

    Google Scholar 

  • MacDonald, S. E., Landhaeusser, S. M., Skousen, J., Franklin, J., Frouz, J., Hall, S., Jacobs, D. F., & Quideau, S. (2015). Forest restoration following surface mining disturbance: Challenges and solutions. New Forests, 46, 703–732.

    Google Scholar 

  • Masiero, M., Pettenella, D., Boscolo, M., Barua, S. K, Animon, I., & Matta, J. R. (2019). Valuing forest ecosystem services: A training manual for planners and project developers. Forestry Working paper no. 11 (216 pp). FAO.

    Google Scholar 

  • Massei, G., Kindberg, J., Licoppe, A., Gačic, D., Sprem, N., Kamler, J., Baubet, E., Hohmann, U., Monaco, A., Ozolins, J., Cellina, S., Podgorski, T., Fonseca, C., Markov, N., Pokorny, B., Rosell, C., & Nahlik, A. (2014). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Managemen Science, 71, 492–500.

    Google Scholar 

  • Matějíček, J., & Zádrapa, R. (2014). Oceňování lesa. Mendelova univerzita v Brně.

    Google Scholar 

  • McGrath, M. J., Luyssaert, S., Meyfroidt, P., Kaplan, J. O., Bürgi, M., Chen, Y., Erb, K., Gimmi, U., McInerney, D., Naudts, K., Otto, J., Pasztor, F., Ryder, J., Schelhaas, M. J., & Valade, A. (2015). Reconstructing European forest management from 1600 to 2010. Biogeosciences, 12, 4291–4316.

    Google Scholar 

  • Milewski, W. (2017). Forests in Poland. The State Forests Information Centre.

    Google Scholar 

  • Mills, L. S., Soule, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. Bioscience, 43, 219–224.

    Google Scholar 

  • Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L., & Musiani, M. (2011). Human activity helps prey win the predator-prey space race. PLoS One, 6(3), e17050. https://doi.org/10.1371/journal.pone.0017050

    Article  CAS  Google Scholar 

  • Mulder, J., de Wit, H. A., Boonen, H. W. J., & Bakken, L. R. (2001). Increased levels of aluminium in forest soils: Effects on the stores of soil organic carbon. Water, Air, and Soil Pollution, 130, 989–994.

    Google Scholar 

  • Murray, K. A., Allen, T., Loh, E., Machalaba, C., & Daszak, P. (2016). Emerging viral zoonoses from wildlife associated with animal-based food systems: Risks and opportunities. In M. Jay-Russell & M. Doyle (Eds.), Food safety risks from wildlife (Food microbiology and food safety). Springer.

    Google Scholar 

  • Nabuurs, G. J., & Schelhaas, M. J. (2002). Carbon profiles of typical forest types across Europe assessed with CO2FIX. Ecological Indicators, 1, 213–223.

    CAS  Google Scholar 

  • Nellemann, C., & INTERPOL Environmental Crime Programme (Eds.). (2012). Green carbon, Black trade: Illegal logging, tax fraud and laundering in the worlds tropical forests. A rapid response assessment. United Nations Environment Programme, GRIDArendal.

    Google Scholar 

  • Neupane, D. (2020). How conservation will be impacted in the COVID-19 pandemic. Wildlife Biology, 2020(2). https://doi.org/10.2981/wlb.00727

  • Nohrstedt, H. O. (2001). Response of coniferous forest ecosystems on mineral soils to nutrient additions: A rewiew of Swedish experiences. Scandinavian Journal of Forest Research, 16(6), 555–573.

    Google Scholar 

  • Nowacky, G. J., & Abrams, M. D. (2008). The demise of fire and “mesophication” of forests in the eastern United States. BioScience, 58, 123–138.

    Google Scholar 

  • Ntiamoa-Baidu, Y. (1997). Wildlife and food security in Africa. FAO conservation guide 33, FAO.

    Google Scholar 

  • Nussbaumer, T. (2003). Combustion and co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction. Energy & Fuels, 17, 1510–1521.

    CAS  Google Scholar 

  • Oliver, C. D., Osawa, A., & Camp, A. (1998). Forest dynamics and resulting animal and plant population changes at the stand and landscape levels. Journal of Sustainable Forestry, 6(3/4), 281–312.

    Google Scholar 

  • Oswald, S. N., & Smith, W. B. (2014). US Forest resurce fact and historical trend. USDA.

    Google Scholar 

  • Page, S., Siegert, F., Rieley, J., et al. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.

    CAS  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    CAS  Google Scholar 

  • Pangala, S. R., Enrich-Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R. C., Gatti, L. V., Marotta, H., Calazans, L. S. B., Sakuragui, C. M., Bastos, W. R., Malm, O., Gloor, E., Miller, J. B., & Gauci, V. (2017). Large emissions from floodplain trees close the Amazon methane budget. Nature, 552, 230–234.

    CAS  Google Scholar 

  • Peltzer, D. A., Wardle, D. A., Allison, V. J., Baisden, W. T., Bardgett, R. D., Chadwick, O. A., Condron, L. M., Parfitt, R. L., Porder, S., Richardson, S. J., Turner, B. L., Vitousek, P. M., Walker, J., & Walker, L. R. (2010). Understanding ecosystem retrogression. Ecological Monographs, 80(4), 509–529.

    Google Scholar 

  • Pommerening, A., & Murphy, S. T. (2004). A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry, 77, 27–44.

    Google Scholar 

  • Potter, K. M., Escanferla, M. E., Jetton, R. M., & Man, G. (2019). Important insect and disease threats to United States – Tree species and geographic patterns of their potential impacts. Forests, 10(4), 304. https://doi.org/10.3390/f10040304

    Article  Google Scholar 

  • Pretzsch, H. (2009). Forest dynamics, growth, and yield. In Forest dynamics, growth and yield. Springer.

    Google Scholar 

  • Pretzsch, H., Schütze, G., & Uhl, E. (2013). Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biology, 15(3), 483–495.

    CAS  Google Scholar 

  • Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P. F., & Scherman, O. (2017). Thewoodfromthetrees: Theuse of timber in construction. Renewable and Sustainable Energy Reviews, 68(1), 333–359.

    Google Scholar 

  • Reid, E. M. (1935). British floras antecedent to the Great Ice Age. Discussions on the origin and relationship of the British flora. Proceedings of the Royal Society of London. Series B, Biological Sciences, 118, 197–241.

    Google Scholar 

  • Reineke, L. H. (1933). Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research, 46, 627–638.

    Google Scholar 

  • Remeš, J., Pulkrab, K., Bilek, L., & Podrazsky, V. (2020). Economic and production effect of tree species change as a result of adaptation to climate change. Forests, 11(4), 431.

    Google Scholar 

  • Richardson, D. M. (Ed.). (1998). Ecology and biogeography of Pinus. Cambridge University Press.

    Google Scholar 

  • Russell, T. (2017). The illustrated encyclopedia of trees of Britain and Europe. Southwater.

    Google Scholar 

  • Samojlik, T., & Kuijper, D. P. J. (2013). Grazed wood pasture versus browsed high forests: Impact of ungulates on forest landscapes from the perspective of the Białowieża Primeval Forest. In I. D. Rotherham (Ed.), Trees, forested landscapes and grazing animals – A European perspective on woodlands and grazed treescapes (pp. 143–162). Routledge.

    Google Scholar 

  • Saner, P., Loh, Y. Y., Ong, R. C., & Hector, A. (2012). Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLoS One, 7(1), e29642.

    CAS  Google Scholar 

  • San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., & Mauri, A. (Eds.). (2016). European atlas of forest tree species. European Comission.

    Google Scholar 

  • Schmid, M., Pautasso, M., & Holdenrieder, O. (2014). Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe. European Journal of Forest Research, 133, 13–29.

    Google Scholar 

  • Schulp, C. J. E., Thuiller, W., & Verburg, P. H. (2014). Wild food in Europe: A synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecological Economics, 105, 292–305.

    Google Scholar 

  • Scott, A. C., & Glasspool, I. J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences, 103(29), 10861–10865.

    CAS  Google Scholar 

  • Sekercioglu, C. H., & Robinson, S. K. (2011). Effects of habitat fragmentation on tropical birds. In N. S. Sodhi, Ç. H. Sekercioglu, J. Barlow, & S. K. Robinson (Eds.), Conservation of tropical birds. Blackwell Publishing Ltd.

    Google Scholar 

  • Senici, D., Chen, H. Y. H., Bergeron, Y., & Cyr, D. (2010). Spatiotemporal variations of fire frequency in central boreal forest. Ecosystems, 13, 1227–1238.

    Google Scholar 

  • Senici, D., et al. (2013). Multi-millennial fire frequency and tree abundance differ between xeric and mesic boreal forests in Central Canada. Journal of Ecology, 101, 356–367.

    Google Scholar 

  • Senici, D., Chen, H. Y. H., & Bergeron, Y. (2015). The effects of forest fuel connectivity on spatiotemporal dynamics of holocene fire regimes in the central boreal forest of North America. Journal of Quarternary Science, 30(4), 365–375.

    Google Scholar 

  • Seobi, T., Anderson, S. H., Udawatta, R. P., & Gantzer, C. J. (2005). Influence of grass and agroforestry buffer strips on soil hydraulic properties for an Albaqualf. Soil Science Society of America Journal, 69, 893–901.

    CAS  Google Scholar 

  • Sheil, D. (2018). Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. Forest Ecosystems, 5, 19. https://doi.org/10.1186/s40663-018-0138-y

    Article  Google Scholar 

  • Sikström, U. (2001). Effects of pre-harvest soil acidification, liming and N-fertilization on the survival, growth and needle eement concentrations of Picea abies L. Karst. seedlings. Plant and Soil, 231, 255–266.

    Google Scholar 

  • Simola, H., Pitkänen, A., & Turunen, J. (2012). Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. European Journal of Soil Science, 63, 798–807.

    CAS  Google Scholar 

  • Sjostrom, E. (1993). Wood chemistry. Academic Press.

    Google Scholar 

  • Skovsgaard, J. P., & Vancay, J. K. (2008). Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry, 81, 7–31.

    Google Scholar 

  • SLU. (2020). Forest statistics 2020, official statistics of Sweden. Swedish University of Agricultural Sciences.

    Google Scholar 

  • Šmelko, S., Bošeľa, M., Merganič, J., & Jankovič, J. (2006). National forest inventory and monitoring of the Slovak Republic 2005–2006. Basic concept and selected summary information. National Forest Centre – Forest Research Institute.

    Google Scholar 

  • Spiecker, H., Lindner, M., & Schuler, J. (Eds.). (2019). Douglas-fir – An option for Europe. EFI what science can tell us 9.

    Google Scholar 

  • Sýkora, I. (2012). Produkce zvěřiny v jednotlivých typech honiteb. Myslivost, 3, 26.

    Google Scholar 

  • Taylor, W. A., Lindsey, P. A., Nicholson, S. K., Relton, C., & Davies-Mostert, H. T. (2020). Jobs, game meat and profits: The benefits of wildlife ranching on marginal lands in South Africa. Biological Conservation, 245, 108561.

    Google Scholar 

  • Temple, S. A. (1987). Do predators always capture substandard individuals disproportionately from prey populations? Ecology, 68, 669–674.

    Google Scholar 

  • Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17.

    Google Scholar 

  • Tinner, W., Conedera, M., Ammann, B., & Lotter, A. F. (2005). Fire ecology north and south of the Alps since the last ice age. The Holocene, 15, 1214–1226.

    Google Scholar 

  • Unger, N. (2014). Human land-use-driven reduction of forest volatiles cools global climate. Nature Climate Change, 4, 907–910.

    CAS  Google Scholar 

  • Vacek, S., & Podrázský, V. (2006). Přírodě blízké lesní hospodářství v podmínkách střední Evropy: pěstování lesů. ČZU v Praze, Fakulta lesnická a environmentální.

    Google Scholar 

  • Vacek, S., Hejcman, M., Semelová, V., et al. (2009). Effect of soil chemical properties on growth, foliation and nutrition of Norway spruce stand affected by yellowing in the Bohemian Forest Mts., Czech Republic. European Journal of Forest Research, 128, 367–375.

    CAS  Google Scholar 

  • Vacek, S., Vacek, Z., Ulbrichová, I., Remeš, J., Podrázský, V., Vach, M., Bulušek, D., Král, J., & Putalová, T. (2019). The effects of fertilization on the health status, nutrition and growth of Norway spruce forests with yellowing symptoms. Scandinavian Journal of Forest Research, 34, 267–281.

    Google Scholar 

  • Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., et al. (2015). Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience, 65, 1011–1018. https://doi.org/10.1093/biosci/biv118

    Article  Google Scholar 

  • Vera, F. W. M. (2000). Grazing ecology and forest history. CAB International.

    Google Scholar 

  • Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35–48.

    Google Scholar 

  • Viitala, E. J. (2013). The discovery of the Faustmann formula in natural resource economics. History of Political Economy, 45, 521–548.

    Google Scholar 

  • Viitala, E. J. (2016). Faustmann formula before Faustmann in German territorial states. Forest Policy and Economics, 65, 47–58.

    Google Scholar 

  • Vilà, M., Carrillo-Gavilàn, A., Vayreda, J., Bugmann, H., Fridman, J., et al. (2013). Disentangling biodiversity and climatic determinants of wood production. PLoS One, 8(2), e53530.

    Google Scholar 

  • Vindušková, O., & Frouz, J. (2013). Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: A quantitative review. Environmental Earth Sciences, 69(5), 1685–1698.

    Google Scholar 

  • Vitkova, L., Bače, R., Svoboda, M., & Kjucukov, P. (2018). Deadwood management in Central European forests: Key considerations for practical implementation. Forest Ecology and Management, 429, 394–405.

    Google Scholar 

  • Vrška, T., Adam, D., Hort, L., Kolar, T., & Janık, D. (2009). European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians – A developmental cycle or a linear trend induced by man? Forest Ecology and Management, 258, 347–356.

    Google Scholar 

  • Wang, X., Edwards, R., Auler, A., et al. (2017). Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature, 541, 204–207.

    CAS  Google Scholar 

  • Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M., & Coomesc, D. A. (2003). Long-term effects of wildfire on ecosystem properties across an island area gradient. Science, 300(5621), 972–975.

    CAS  Google Scholar 

  • Warren, J. M., Jensen, A. M., Medlyn, B. E., Norby, R. J., & Tissue, D. T. (2015). Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment. AoB Plants, 7, plu074. https://doi.org/10.1093/aobpla/plu074

    Article  CAS  Google Scholar 

  • Wood, H. B. (1977). Hydrologic differences between selected forested and agricultural soils in Hawaii. Soil Science Society of America Journal, 41, 132–136.

    Google Scholar 

  • Wright, R. F., Alewell, C., Cullen, J. M., Evans, C. D., Marchetto, A., Moldan, F., Prechtel, A., & Rogora, M. (2001). Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrology and Earth System Sciences, 5, 299–310.

    Google Scholar 

  • Yamamoto, S. I. (2000). Forest gap dynamics and tree regeneration. Journal of Forest Research, 5(4), 223–229.

    Google Scholar 

  • Zeckhauser, R. (2017). Human hunters and nonhuman predators: Fundamental differences. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 13–14.

    CAS  Google Scholar 

  • Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resource Research, 37, 701–708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frouz, J., Frouzová, J. (2022). Forestry and Hunting. In: Applied Ecology. Springer, Cham. https://doi.org/10.1007/978-3-030-83225-4_3

Download citation

Publish with us

Policies and ethics