Skip to main content

Satellite-Based Soil Erosion Mapping

  • Chapter
  • First Online:
Book cover Sustainable Agriculture

Abstract

Soil erosion has long been recognised as a significant process of soil destruction, affecting millions of hectares of land worldwide, resulting in loss of fertility and biodiversity, decreased stability of marine and terrestrial ecosystems and enhanced exposure to climate change. In semi-arid zones, the highest rate of deforestation occurred in wooded grassland, bushland and shrubland systems, while the lowest rate occurred in woodland. Satellite remote sensing technology for tracking and modelling soil erosion has exploded in popularity worldwide over the last decade. More precisely, renewed emphasis has been placed on recent advances in remote sensing technologies and the availability of these data at various resolutions, as well as on the critical need for up-to-date knowledge on soil loss levels, soil erosion monitoring and modelling, in particular, to ensure that viable agricultural fields are available to ensure food security. GIS research delivers adequate results when developing erosion surveys and risk maps using GIS data layers such as DEM, slope, aspect and land use. The Revised Universal Soil Loss Equation (RUSLE), the Water Erosion Prediction Project (WEPP) and Environmental Information Coordination are the most widely used scientific erosion prediction models that are combined with remote sensing and GIS (CORINE). Remote sensing techniques and the universal soil loss equation were established as the primary tools for mapping and tracking soil erosion in this chapter. It consists of four components: baseline sheet and rill erosion mapping, real-time rill and gully erosion monitoring, future sheet and rill erosion change forecast and long-term pattern determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24(3), 223–234. https://doi.org/10.1111/j.1475-2743.2008.00169.x.

    Article  Google Scholar 

  • Bergsma, E. (1974). Soil erosion sequences on aerial photographs. ITC Journal, 3, 342–376.

    Google Scholar 

  • Bisal, F. (1960). The effects of raindrop size and impact velocity on sand splash. Canadian Journal of Soil Science, 40, 242–245. http://dx.doi.org/10.4141/cjss60-030.

  • Blum, W. E. H. (2005). Functions of soil for society and the environment. Reviews in Environmental Science and Bio/Technology, 4(3), 75–79. https://doi.org/10.1007/s11157-005-2236-x.

    Article  Google Scholar 

  • Bocco, G., & Valenzuela, C. R. (1993). Integrating satellite remote sensing and geographic information systems technologies in gully erosion research. Remote Sensing Reviews, 7(3–4), 233–240. https://doi.org/10.1080/02757259309532179.

    Article  Google Scholar 

  • Bojie, F., Xilin, W., & Gulinck, H. (1995). Soil erosion types in the Loess Hill and Gully area of China. Journal of Environmental Science & Engineering, 7, 266–272.

    Google Scholar 

  • Bouyoucos, G. J. (1935). The clay ratio as a criterion of susceptibility of soils to erosion. Journal of the American Society of Agronomy, 27, 738–741.

    Google Scholar 

  • Brazier, R. E., Beven, K. J., Freer, J. F., & Rowan, J. S. (2000). Equifinality and uncertainty in physically based soil erosion models: Application of the GLUE methodology to WEPP—the Water Erosion Prediction Project—For sites in the UK and USA. Earth Surface Processes and Landforms, 25(8), 825–845. https://doi.org/10.1002/1096-9837(200008)25:8<825::AID-ESP101>3.0.CO;2-3.

    Article  Google Scholar 

  • Colwell, R. N. (Ed.). (1983). Manual of remote sensing (2nd ed., p. 2240). Falls Church, VA: American Society for Photogrammetry.

    Google Scholar 

  • De Jong, S. M., Paracchini, M. L., Bertolo, F., Folving, S., Megier, J., & De Roo, A. P. J. (1999). Regional assessment of soil erosion using the distributed model Semmed and remotely sensed data. Catena, 37(3–4), 291–308. https://doi.org/10.1016/S0341-8162(99)00038-7.

    Article  Google Scholar 

  • De la Rosa, D., Mayol, F., Moreno, J. A., Bonsón, T., & Lozano, S. (1999). An expert system/neural network model (ImpelERO) for evaluating agricultural soil erosion in Andalucia region, southern Spain. Agriculture, Ecosystems and Environment, 73(3), 211–226. https://doi.org/10.1016/S0167-8809(99)00050-X.

    Article  Google Scholar 

  • Desmet, P. J. J., & Govers, G. (1995). GIS-based simulation of erosion and deposition patterns in an agricultural landscape: A comparison of model results with soil map information. Catena, 25(1–4), 389–401. https://doi.org/10.1016/0341-8162(95)00019-O.

    Article  Google Scholar 

  • Ellison W. D. (1947a). Soil Erosion Studies-Part 5, Soil Transportation in the Splash Process. Agricultural Engineering, 28(8), 349–351.

    Google Scholar 

  • Ellison W. D. (1947b). Soil Erosion Studies-Part 2, Soil Detachment Hazard by Raindrop Splash. Agricultural Engineering, 28(5), 197–201.

    Google Scholar 

  • Fernandez, C., Wu, Q., McCool, D. K., & Stockle, C. O. (2003). Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. Journal of Soil and Water Conservation. Royal Swedish Academy of Sciences, 58(3), 128 Community Perception.

    Google Scholar 

  • Greene, R. G., & Cruise, J. F. (1995). Urban watershed modeling using geographic information system. Journal of Water Resources Planning and Management, 121(4), 318–325. https://doi.org/10.1061/(ASCE)0733-9496(1995)121:4(318).

    Article  Google Scholar 

  • Hall, F. G., Townshend, J. R., & Engman, E. T. (1995). Status of remote-sensing algorithms for estimation of land-surface state parameters. Remote Sensing of Environment, 51(1), 138–156. https://doi.org/10.1016/0034-4257(94)00071-T.

    Article  Google Scholar 

  • He, H. S., Mladenoff, D. J., Radeloff, V. C., & Crow, T. R. (1998). Integration of GIS data and classified satellite imagery for regional forest assessment. Ecological Applications, 8(4), 1072–1083. https://doi.org/10.1890/1051-0761(1998)008[1072:IOGDAC]2.0.CO;2.

    Article  Google Scholar 

  • Herweg, K. (1996). Field manual for assessment of current erosion damage. SCRP Ethiopia, and Centre for Development and Environment. Berne, Switzerland: University of Berne (p. 69).

    Google Scholar 

  • Hill, J., Mégier, J., & Mehl, W. (1995). Land degradation, soil erosion and desertification monitoring in Mediterranean ecosystems. Remote Sensing Reviews, 12(1–2), 107–130. https://doi.org/10.1080/02757259509532278.

    Article  Google Scholar 

  • Hudson, N. W. (1993). Field measurement of soil erosion and runoff. FAO Soils Bulletin. 68. Rome, Italy: Food and Agriculture Organization.

    Google Scholar 

  • Huete, A. R. (2004). Remote sensing for environmental monitoring in: Environmental monitoring and characterization.

    Google Scholar 

  • Jensen, J. R. (2004). Introductory digital image processing: A remote sensing perspective (3rd ed., p. 526). Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  • Jetten, V., Govers, G., & Hessel, R. (2003). Erosion models: Quality of spatial predictions. Hydrological Processes, 17(5), 887–900. https://doi.org/10.1002/hyp.1168.

    Article  Google Scholar 

  • Kenneth, R. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • King, C., Baghdadi, N., Lecomte, V., & Cerdan, O. (2005). The application of remote-sensing data to monitoring and modelling of soil erosion. Catena, 62(2–3), 79–93. https://doi.org/10.1016/j.catena.2005.05.007.

    Article  Google Scholar 

  • Kirkby, M. J., Imeson, A. C., Bergkamp, G., & Cammeraat, L. H. (1996). Scaling up processes and models from the field plot to the watershed and regional areas. Journal of Soil and Water Conservation, 51(5), 391–396.

    Google Scholar 

  • Laws, J. O., & Parsons, D. A. (1943). The relation of raindrop-size to intensity. Transactions American Geophysical Union, 24, 452–460. https://doi.org/10.1029/TR024i002p00452.

  • Lee, H., & Liu, J. G. (2001). Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(2), 223–232. https://doi.org/10.1109/36.905230.

    Article  Google Scholar 

  • Loughran, R. J. (1989). The measurement of soil erosion. Progress in Physical Geography: Earth and Environment, 13(2), 216–233. https://doi.org/10.1177/030913338901300203.

    Article  Google Scholar 

  • Lubczynski, M. W., & Gurwin, J. (2005). Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain. Journal of Hydrology, 306(1–4), 71–96. https://doi.org/10.1016/j.jhydrol.2004.08.038.

    Article  CAS  Google Scholar 

  • Martínez-Casasnovas, J. A. (2003). A spatial information technology approach for the mapping and quantification of gully erosion. Catena, 50(2–4), 293–308. https://doi.org/10.1016/S0341-8162(02)00134-0.

    Article  Google Scholar 

  • Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software, 18(8–9), 761–799. https://doi.org/10.1016/S1364-8152(03)00078-1.

    Article  Google Scholar 

  • Mihara, H. (1959). Raindrops and soil erosion. Bulletin of the National Institute of Agricultural, Sere A, 1, 48–51.

    Google Scholar 

  • Morgan, R. P. C. (2005). Soil erosion and conservation (3rd ed.). Malden, Oxford, Victoria, UK: Blackwell Publishing.

    Google Scholar 

  • Nachtergaele, J., & Poesen, J. (1999). Assessment of soil losses by ephemeral gully erosion using high-altitude (stereo) aerial photographs. Earth Surface Processes and Landforms, 24(8), 693–706. https://doi.org/10.1002/(SICI)1096-9837(199908)24:8<693::AID-ESP992>3.0.CO;2-7.

    Article  Google Scholar 

  • Nearing, M. A., Govers, G., & Norton, L. D. (1999). Variability in soil erosion data from replicated plots. Soil Science Society of America Journal, 63(6), 1829–1835. https://doi.org/10.2136/sssaj1999.6361829x.

    Article  CAS  Google Scholar 

  • Nearing, M. A., Pruski, F. F., & O’Neal, M. R. (2004). Expected climate change impacts on soil erosion rates, a review. Journal of Soil and Water Conservation, 59(1), 43–50.

    Google Scholar 

  • Onyando, J. O., Kisoyan, P., & Chemelil, M. C. (2005). Estimation of potential soil erosion for river perkerra catchment in Kenya. Water Resources Management, 19(2), 133–143. https://doi.org/10.1007/s11269-005-2706-5.

    Article  Google Scholar 

  • Pickup, G., & Nelson, D. J. (1984). Use of Landsat radiance parameters to distinguish soil erosion, stability, and deposition in arid Central Australia. Remote Sensing of Environment, 16(3), 195–209. https://doi.org/10.1016/0034-4257(84)90064-6.

    Article  Google Scholar 

  • Reusing, M., Schneider, T., & Ammer, U. (2000). Modeling soil loss rates in the Ethiopian highlands by integration of high-resolution MOMS-02/D2-Streaodata in a GIS. International Journal of Remote Sensing, 21(9), 1885–1896. https://doi.org/10.1080/014311600209797.

    Article  Google Scholar 

  • Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. International Journal of Remote Sensing, 23(2), 357–369. https://doi.org/10.1080/01431160010014260.

    Article  Google Scholar 

  • Sazbo, J., Pasztor, L., Suba, Z., & Varallyay, G. (1998). Integration of remote sensing and GIS techniques in land degradation mapping. Proceedings of the 16th international congress of soil science, Montpellier, France, August (pp. 63–75).

    Google Scholar 

  • Schoorl, J. M., Sonneveld, M. P. W., & Veldkamp, A. (2000). Three-dimensional landscape process modelling: The effect of DEM resolution. Earth Surface Processes and Landforms, 25(9), 1025–1034. https://doi.org/10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z.

    Article  Google Scholar 

  • Sonneveld, B. G. J. S. (2003). Formalising expert judgments in land degradation assessment: A case study from Kenya. Land Degradation and Development, 14(4), 347–361. https://doi.org/10.1002/ldr.564.

    Article  Google Scholar 

  • Stroosnijder, L. (2005). Measurement of erosion: Is it possible? Catena, 64(2–3), 162–173. https://doi.org/10.1016/j.catena.2005.08.004.

    Article  Google Scholar 

  • Subramanya, K. (2008). Engineering hydrology (3rd ed., pp. 374–379). New Delhi: Tata McGraw-Hill.

    Google Scholar 

  • Tamene, L., Park, S. J., Dikau, R., & Vlek, P. L. G. (2006). Analysis of factors determining sediment yield variability in the highlands of Northern Ethiopia. Geomorphology, 76(1–2), 76–91. https://doi.org/10.1016/j.geomorph.2005.10.007.

    Article  Google Scholar 

  • Tim, U. S., & Jolly, R. (1994). Evaluating agricultural nonpoint-source pollution using integrated geographic information-systems and hydrologic/water quality model. Journal of Environmental Quality, 23(1), 25–35. https://doi.org/10.2134/jeq1994.00472425002300010006x.

    Article  Google Scholar 

  • Toutin, T. (2001). Elevation modelling from satellite visible and infrared (VIR) data. International Journal of Remote Sensing, 22(6), 1097–1125. https://doi.org/10.1080/01431160117862.

    Article  Google Scholar 

  • Toutin, T., & Gray, L. (2000). State-of-the-art of elevation extraction from satellite SAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 55(1), 13–33. https://doi.org/10.1016/S0924-2716(99)00039-8.

    Article  Google Scholar 

  • Vigiak, O., Okoba, B. O., Sterk, G., & Groenenberg, S. (2005). Modelling catchment-scale erosion patterns in the East African highlands. Earth Surface Processes and Landforms, 30(2), 183–196. https://doi.org/10.1002/esp.1174.

    Article  Google Scholar 

  • Wessels, K. J., Prince, S. D., Frost, P. E., & van Zyl, D. (2004). Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1km AVHRR NDVI time-series. Remote Sensing of Environment, 91(1), 47–67. https://doi.org/10.1016/j.rse.2004.02.005.

    Article  Google Scholar 

  • Wischmeier, W. H. (1960). Cropping-management factor evaluations for a universal soil-loss equation. Soil Science Society of America Proceedings, 23, 322–326.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1958). Rainfall energy and its relationship to soil loss. Transactions American Geophysical Union, 39(2), 285–291.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1962). Soil loss estimation as a tool in soil and water management planning. International Association of Scientific Hydrology. Publication, 59, 148–159.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall erosion losses from crop land east of the Rocky Mountains guide for selection of practices soil and water conservation, US Department of Agriculture, Agricultural Handbook No, 282.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses—A guide to conservation planning. US Department of Agriculture Agriculture Handbook, 537.

    Google Scholar 

  • Wischmeier, W. H., Johnson, C. B., & Crors, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.

    Google Scholar 

  • Zemenu, D., & Minale, A. S. (2014). Adoption of soil conservation practices in North Achefer District, Northwest Ethiopia. Chinese Journal of Population, Resources and Environment, 12, 261–268.

    Article  Google Scholar 

  • Zinck, J. A., López, J., Metternicht, G. I., Shrestha, D. P., & Vázquez-Selem, L. (2001). Mapping and modeling mass movements and gullies in mountainous areas using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 3(1), 43–53. https://doi.org/10.1016/S0303-2434(01)85020-0.

    Article  Google Scholar 

  • Zingg, R. W. (1940). Degree and length of land slope as it effects soil loss in runoff. Agricultural Engineering, 21, 59–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, K.K., Kar, S., Rout, S. (2022). Satellite-Based Soil Erosion Mapping. In: Bandh, S.A. (eds) Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-83066-3_13

Download citation

Publish with us

Policies and ethics