Skip to main content

Morphological, Physiological, and Biochemical Modulations in Crops under Salt Stress

  • Chapter
  • First Online:
Building Climate Resilience in Agriculture

Abstract

Crop plants are affected by biotic and abiotic stresses (including salinity) and such stresses may affect the growth and yield of these crop plants seriously. High temperature (due to climate change) has also changed the pattern of precipitation and caused rise in sea level. These two factors have impacted soil salinization. To address such problems naturally, the crop plants adapt themselves by different mechanisms including changes in morphological, physiological, and biochemical processes. Both ions including sodium and chloride are the main ions, that become the reason for many physio-biochemical modulations inside plant tissues, in a similar way, chloride ion is the most dangerous because NaCl releases around 60% more ions in soil comparatively with Na2SO4. An extra amount of such types of salts increases the osmotic potential in soil matrix consequently the water absorbance by plants is reduced that leads towards physiological stresses or drought. This increase of Cl− relates to salt tolerance that is linked to plant growth, water use efficiency, and transpiration. Increasing salinity in the nutrient solution reduces growth directly and restricts leaf and root mineral fixing. In this chapter, we have discussed insights into various kinds of morphological, physiological, anatomical, and biochemical modulations in plants caused by abiotic stresses especially salinity. In the era of climate change, plant scientists should focus on each shotgun approaches as well as long-term genomic techniques to enhance salt tolerance in commercially important crops to ensure food security and sustainable productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. J. A. (2017). Plant responses to salt stress: adaptive mechanisms. 7(1), 18.

    Google Scholar 

  • Arbona, V., Marco, A. J., Iglesias, D. J., López-Climent, M. F., Talon, M., & Gómez-Cadenas, A. (2005). Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regulation, 46(2), 153-160.

    Article  CAS  Google Scholar 

  • Ashraf, M., Alvi, A., Sarwar, G., Qureshi, M., Ashraf, M., & Hussain, M. (2005). Effect of ammonium chloride on the growth and nutrient uptake by cotton grown in alkaline soil. Agrochimica, 49(3-4), 153-164.

    CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2005). Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in agronomy, 88, 223-271.

    Article  Google Scholar 

  • Craine, J. M. (2005). Reconciling plant strategy theories of Grime and Tilman. Journal of ecology, 93(6), 1041-1052.

    Article  Google Scholar 

  • Cui, F., Sui, N., Duan, G., Liu, Y., Han, Y., Liu, S., . . . Li, G. J. F. I. P. S. (2018). Identification of metabolites and transcripts involved in salt stress and recovery in peanut. 9, 217.

    Google Scholar 

  • Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137(3), 807-818.

    Article  CAS  Google Scholar 

  • El-Esawi, M. A., Alaraidh, I. A., Alsahli, A. A., Ali, H. M., Alayafi, A. A., Witczak, J., & Ahmad, M. J. M. (2018). Genetic variation and alleviation of salinity stress in barley (Hordeum vulgare L.). 23(10), 2488.

    Google Scholar 

  • Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., . . . Biochemistry. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. 118, 199-217.

    Google Scholar 

  • García-Caparrós, P., & Lao, M. T. J. S. H. (2018). The effects of salt stress on ornamental plants and integrative cultivation practices. 240, 430-439.

    Google Scholar 

  • García-Sánchez, F., Botia, P., Fernández-Ballester, G., Cerdá, A., & Lopez, V. M. (2005). Uptake, transport, and concentration of chloride and sodium in three citrus rootstock seedlings. Journal of Plant Nutrition, 28(11), 1933-1945.

    Article  Google Scholar 

  • Ghosh, B., Md, N. A., & Gantait, S. J. R. R. O. A. (2016). Response of rice under salinity stress: a review update. 1-8.

    Google Scholar 

  • Greenwood, M., & MacFarlane, G. (2009). Effects of salinity on competitive interactions between two Juncus species. Aquatic Botany, 90(1), 23-29.

    Article  CAS  Google Scholar 

  • Grieve, A., Prior, L., & Bevington, K. (2007). Long-term effects of saline irrigation water on growth, yield, and fruit quality of ‘Valencia’orange trees. Australian Journal of Agricultural Research, 58(4), 342-348.

    Article  Google Scholar 

  • Hameed, M., & Ashraf, M. (2008). Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora-Morphology, Distribution, Functional Ecology of Plants, 203(8), 683-694.

    Article  Google Scholar 

  • Hammad HM et al., 2018. Offsetting land degradation through nitrogen and water management during maize cultivation under arid conditions. Land Degradation and Development 2018; 1366-1375

    Article  Google Scholar 

  • Iqbal, N., Ashraf, M., Javed, F., Martinez, V., & Ahmad, K. (2006). Nitrate reduction and nutrient accumulation in wheat grown in soil salinized with four different salts. Journal of Plant Nutrition, 29(3), 409-421.

    Article  CAS  Google Scholar 

  • Kaleem, F., Shabir, G., Aslam, K., Rasul, S., Manzoor, H., Shah, S. M., . . . biotechnology. (2018). An overview of the genetics of plant response to salt stress: present status and the way forward. 186(2), 306-334.

    Google Scholar 

  • Kaya, C., Ashraf, M., Alyemeni, M. N., Ahmad, P. J. E., & safety, e. (2020). The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. 196, 110483.

    Google Scholar 

  • Ke, Q., Ye, J., Wang, B., Ren, J., Yin, L., Deng, X., & Wang, S. J. F. I. P. S. (2018). Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. 9, 914.

    Google Scholar 

  • Keutgen, A. J., & Pawelzik, E. (2008). Quality and nutritional value of strawberry fruit under long term salt stress. Food chemistry, 107(4), 1413-1420.

    Article  CAS  Google Scholar 

  • Liu, N.-Y., Ko, S.-S., Yeh, K.-C., & Charng, Y.-Y. (2006). Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science, 170(5), 976-985.

    Article  CAS  Google Scholar 

  • López-Climent, M. F., Arbona, V., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2008). Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany, 62(2), 176-184.

    Article  Google Scholar 

  • Manchanda, G., & Garg, N. (2008). Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30(5), 595-618.

    Article  CAS  Google Scholar 

  • Min, W., Guo, H., Zhou, G., Zhang, W., Ma, L., Ye, J., & Hou, Z. (2014). Root distribution and growth of cotton as affected by drip irrigation with saline water. Field Crops Research, 169, 1-10.

    Article  Google Scholar 

  • Mishra, A., & Tanna, B. J. F. I. P. S. (2017). Halophytes: potential resources for salt stress tolerance genes and promoters. 8, 829.

    Google Scholar 

  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663.

    Article  CAS  Google Scholar 

  • Naumann, J. C., Young, D. R., & Anderson, J. E. (2007). Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiologia Plantarum, 131(3), 422-433.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., Stanton, D. E., Schmitz, N., Farquhar, G. D., & Ball, M. C. J. A. O. B. (2015). Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. 115(3), 397-407.

    CAS  Google Scholar 

  • Othman, Y., Al-Karaki, G., Al-Tawaha, A., & Al-Horani, A. (2006). Variation in germination and ion uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences, 2(1), 11-15.

    Article  Google Scholar 

  • Padan, E., & Landau, M. J. T. A. M. I. T. R. F. L. (2016). Sodium-proton (Na+/H+) antiporters: properties and roles in health and disease. 391-458.

    Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.

    Article  CAS  Google Scholar 

  • Parihar, P., Singh, S., Singh, R., Singh, V. P., Prasad, S. M. J. E. S., & Research, P. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. 22(6), 4056-4075.

    Google Scholar 

  • Park, H. J., Kim, W.-Y., Yun, D.-J. J. M., & cells. (2016). A new insight of salt stress signaling in plant. 39(6), 447.

    Google Scholar 

  • Poór, P., Gémes, K., Horváth, F., Szepesi, A., Simon, M., & Tari, I. (2011). Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biology, 13(1), 105-114.

    Article  Google Scholar 

  • Qazizadah, N. A. (2016). Response of wheat varieties to nitrogen under saline water irrigation. HARYANA AGRICULTURAL UNIVERSITY HISAR,

    Google Scholar 

  • Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S. A., . . . Research, P. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. 22(20), 15416-15431.

    Google Scholar 

  • Ryu, H., & Cho, Y.-G. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology, 58(3), 147-155. doi:https://doi.org/10.1007/s12374-015-0103-z

    Article  CAS  Google Scholar 

  • EL Sabagh A, et al. (2019) Drought and salinity stresses in barley: Consequences and mitigation strategies. Australian Journal of Crop Science 13(06):810-820

    Article  Google Scholar 

  • Saha, B., Mishra, S., Awasthi, J. P., Sahoo, L., Panda, S. K. J. E., & Botany, E. (2016). Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). 128, 99-111.

    Google Scholar 

  • Saha, J., Brauer, E. K., Sengupta, A., Popescu, S. C., Gupta, K., & Gupta, B. J. F. I. E. S. (2015). Polyamines as redox homeostasis regulators during salt stress in plants. 3, 21.

    Google Scholar 

  • Sequera-Mutiozabal, M., Antoniou, C., Tiburcio, A. F., Alcázar, R., & Fotopoulos, V. J. C. M. B. R. (2017). Polyamines: emerging hubs promoting drought and salt stress tolerance in plants. 3(1), 28-36.

    Google Scholar 

  • Sharifi, M., Ghorbanli, M., & Ebrahimzadeh, H. (2007). Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of plant physiology, 164(9), 1144-1151.

    Article  CAS  Google Scholar 

  • Skorupa, M., GoÅ‚Ä™biewski, M., Kurnik, K., NiedojadÅ‚o, J., KÄ™sy, J., Klamkowski, K., . . . Tyburski, J. J. B. P. B. (2019). Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. 19(1), 1-18.

    Google Scholar 

  • StÄ™pieÅ„, P., & KÅ‚bus, G. (2006). Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum, 50(4), 610.

    Google Scholar 

  • Sun, J., Chen, S.-L., Dai, S.-X., Wang, R.-G., Li, N.-Y., Shen, X., . . . behavior. (2009). Ion flux profiles and plant ion homeostasis control under salt stress. 4(4), 261-264.

    Google Scholar 

  • Syvertsen, J., & Levy, Y. (2005). Salinity interactions with other abiotic and biotic stresses in citrus. HortTechnology, 15(1), 100-103.

    Article  Google Scholar 

  • Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2011). Physiological responses of soybean ('Glycine max'L.) To zinc application under salinity stress. Australian Journal of Crop Science, 5(11), 1441.

    Google Scholar 

  • Willadino, L., & Câmara, T. (2005). Aspectos fisiológicos do estresse salino em plantas. R. Custodio, E. Aráujo, L. Gómez, and U. cavalcante (eds.). Estresses ambientais: Danos e benefícios em plantas. MXM. Gráfica e editora. Recife, Pernambuco, Brasil, 127-137.

    Google Scholar 

  • Win, K., & Oo, A. J. A. P. A. R. (2017). Salt-stress-induced changes in protein profiles in two blackgram (Vigna Mungo L.) varieties differing salinity tolerance. 7(1), 00239.

    Google Scholar 

  • Yang, H., Yuan, X., Zhou, Y., Mao, Y., Zhang, T., & Liu, Y. (2005). Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquaculture Research, 36(11), 1085-1092.

    Article  Google Scholar 

  • Yang, Y., & Guo, Y. J. J. O. I. P. B. (2018). Unraveling salt stress signaling in plants. 60(9), 796-804.

    Google Scholar 

  • Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., & Xia, G. J. T. I. P. S. (2020). How plant hormones mediate salt stress responses.

    Google Scholar 

  • YUAN, X.-T. (2006). Salinity effect on respiration and excretion of sea cucumber Apostichopus japonicus (Selenka). Oceanol Limnol Sinica, 37(4), 354-360.

    Google Scholar 

  • Zeng, W., Xu, C., Wu, J., & Huang, J. J. F. C. R. (2016). Sunflower seed yield estimation under the interaction of soil salinity and nitrogen application. 198, 1-15.

    Google Scholar 

  • Zhu, Y., Guo, J., Feng, R., Jia, J., Han, W., Gong, H. J. P., & Soil. (2016). The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. 406(1), 231-249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Adnan Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balal, R.M. et al. (2022). Morphological, Physiological, and Biochemical Modulations in Crops under Salt Stress. In: Jatoi, W.N., Mubeen, M., Ahmad, A., Cheema, M.A., Lin, Z., Hashmi, M.Z. (eds) Building Climate Resilience in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-79408-8_13

Download citation

Publish with us

Policies and ethics