Skip to main content

The Impact of Non-coding RNA Networks on Disease Comorbidity: Cardiometabolic Diseases, Inflammatory Diseases, and Cancer

  • Chapter
  • First Online:
  • 247 Accesses

Abstract

Notably, a cluster of non-coding RNAs is at the cross-road between metabolic and cardiovascular diseases and the cross-road of metabolic diseases and cancer. This cluster consists of the let-7 family, miR-1, miR-7, miR-9, miR-17, miR-21, miR-26, miR-29, miR-30a, miR-34a, miR-124, miR-130, miR-133, miR-143–145, miR-146a, miR-150, miR-155, miR-181 family, miR-221–222, miR-223, miR-378, miR-455, GAS5, HOTAIR, H19, lincRNA-p21, LINC-ROR, MALAT1, MEG3, MIAT, NEAT1, TUG1, UCA1, XIST, ZFAS1, ANRIL, PVT1. This cluster of non-coding RNAs are candidates for inclusion in machine learning approaches. However, their expression profiles may be affected by other inflammatory diseases like Alzheimer's disease, asthma, arthritis, and renal failure. These comorbidities should be included in risk predicting algorithms. Changes in their expression profiles according to disease stage and behavioral and therapeutic changes should also be considered. Although the same non-coding RNAs are involved in cancer's pathogenesis, opposite changes in their expression occur in tumors than in cardiometabolic tissues. The opposite changes in expression of miRs may be especially due to the specific action of lncRNAs and circ-RNAs in tumors. They include BLACAT1, CASC11, HNF1A-AS1, MACC1-AS1, NIFK-AS1, NORAD, SOX21-AS1, ZEB1-AS1, circ-ANAPC7, circ-ITCH, and circ-MTO1. Besides, piRs with PIWI proteins may silence single-stranded RNAs, like lncRNAs, particularly in cancer cells. With many shared modifiable risk factors, cancer and cardiometabolic diseases often coexist in the same individuals. Therefore, combined risk assessments for cancer and cardiometabolic diseases should account for opposite non-coding RNA expression changes. Combined cardiovascular and hemato-oncological risk prediction may have synergistic, preventive public health benefits.

Illustrations by Pieterjan Ginckels, Faculty of Architecture, KU Leuven, Ghent, Belgium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gu, H., Li, L., Cui, C., Zhao, Z., & Song, G. (2017). Overexpression of let-7a increases neurotoxicity in a PC12 cell model of Alzheimer’s disease via regulating autophagy. Experimental and Therapeutic Medicine, 14, 3688–3698. https://doi.org/10.3892/etm.2017.4977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lehmann, S. M., et al. (2012). An unconventional role for miRNA: Let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience, 15, 827–835. https://doi.org/10.1038/nn.3113.

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez-de Frutos, M. et al. (2019). MicroRNA 7 Impairs Insulin Signaling and Regulates Abeta levels through posttranscriptional regulation of the insulin receptor substrate 2, Insulin Receptor, Insulin-Degrading Enzyme, and Liver X Receptor Pathway. Molecular Cell Biology, 39. doi:https://doi.org/10.1128/MCB.00170-19.

  4. Shi, Z., et al. (2017). The circular RNA ciRs-7 promotes APP and BACE1 degradation in an NF-kappaB-dependent manner. FEBS Journal, 284, 1096–1109. https://doi.org/10.1111/febs.14045.

    Article  CAS  Google Scholar 

  5. Liu, J., et al. (2020). MiR-9-5p inhibits mitochondrial damage and oxidative stress in AD cell models by targeting GSK-3beta. Bioscience, Biotechnology, and Biochemistry, 84, 2273–2280. https://doi.org/10.1080/09168451.2020.1797469.

    Article  CAS  PubMed  Google Scholar 

  6. Li, S. H., et al. (2017). Osthole stimulated neural stem cells differentiation into neurons in an alzheimer’s disease cell model via upregulation of MicroRNA-9 and rescued the functional impairment of hippocampal neurons in APP/PS1 transgenic mice. Front Neurosciences, 11, 340. https://doi.org/10.3389/fnins.2017.00340.

    Article  Google Scholar 

  7. Chang, F., Zhang, L. H., Xu, W. P., Jing, P., & Zhan, P. Y. (2014). microRNA-9 attenuates amyloidbeta-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Molecular Medicine Reports, 9, 1917–1922. https://doi.org/10.3892/mmr.2014.2013.

    Article  CAS  PubMed  Google Scholar 

  8. Jahangard, Y., et al. (2020). Therapeutic effects of transplanted exosomes containing miR-29b to a rat model of alzheimer’s disease. Front Neurosciences, 14, 564. https://doi.org/10.3389/fnins.2020.00564.

    Article  Google Scholar 

  9. Ma, P., et al. (2019). Long non-coding RNA MALAT1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MiR-125b mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s disease. Current Alzheimer Research, 16, 596–612. https://doi.org/10.2174/1567205016666190725130134.

    Article  CAS  PubMed  Google Scholar 

  10. Li, L., Xu, Y., Zhao, M., & Gao, Z. (2020). Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Experimental and Molecular Pathology, 117, 104545. https://doi.org/10.1016/j.yexmp.2020.104545.

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang, J., et al. (2020). Long non-coding RNA MALAT1 and its target microRNA-125b are potential biomarkers for Alzheimer’s disease management via interactions with FOXQ1, PTGS2 and CDK5. American Journal of Translational Research, 12, 5940–5954.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang, Q., et al. (2017). MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3beta pathway in N2a/APP695swe cells. Oncotarget, 8, 24314–24326. https://doi.org/10.18632/oncotarget.15149.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, A. D., et al. (2019). miR-124 regulates cerebromicrovascular function in APP/PS1 transgenic mice via C1ql3. Brain Research Bulletin, 153, 214–222. https://doi.org/10.1016/j.brainresbull.2019.09.002.

    Article  CAS  PubMed  Google Scholar 

  14. An, F., et al. (2017). MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget, 8, 114065–114071. https://doi.org/10.18632/oncotarget.23119.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, X., et al. (2018). A novel MicroRNA-124/PTPN1 Signal pathway mediates synaptic and memory deficits in alzheimer’s disease. Biological Psychiatry, 83, 395–405. https://doi.org/10.1016/j.biopsych.2017.07.023.

    Article  CAS  PubMed  Google Scholar 

  16. Fang, M., et al. (2012). The miR-124 regulates the expression of BACE1/beta-secretase correlated with cell death in Alzheimer’s disease. Toxicology Letters, 209, 94–105. https://doi.org/10.1016/j.toxlet.2011.11.032.

    Article  CAS  PubMed  Google Scholar 

  17. Yue, D., et al. (2020). Silencing of long non-coding RNA XIST attenuated Alzheimer’s disease-related BACE1 alteration through miR-124. Cell Biology International, 44, 630–636. https://doi.org/10.1002/cbin.11263.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, M. Y., et al. (2019). The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s disease progression via miR-124/BACE1 axis. Neurological Research, 41, 489–497. https://doi.org/10.1080/01616412.2018.1548747.

    Article  PubMed  Google Scholar 

  19. Ansari, A., et al. (2019). miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer’s disease. Neurobiology of Aging, 82, 102–109. https://doi.org/10.1016/j.neurobiolaging.2019.06.005.

    Article  CAS  PubMed  Google Scholar 

  20. Sun, C., et al. (2020). miR-143-3p inhibition promotes neuronal survival in an Alzheimer’s disease cell model by targeting neuregulin-1. Folia Neuropathologica, 58, 10–21. https://doi.org/10.5114/fn.2020.94002.

    Article  PubMed  Google Scholar 

  21. Liu, D., et al. (2019). Inhibition of microRNA-155 alleviates cognitive impairment in alzheimer’s disease and involvement of neuroinflammation. Current Alzheimer Research, 16, 473–482. https://doi.org/10.2174/1567205016666190503145207.

    Article  CAS  PubMed  Google Scholar 

  22. Song, J., & Lee, J. E. (2015). miR-155 is involved in Alzheimer’s disease by regulating T lymphocyte function. Front Aging Neuroscienes, 7, 61. https://doi.org/10.3389/fnagi.2015.00061.

    Article  Google Scholar 

  23. Wei, H., et al. (2020). Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis. Cell Death Disease, 11, 290. https://doi.org/10.1038/s41419-020-2490-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yi, J., et al. (2019). Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer’s disease through inactivating the PI3K/Akt signaling pathway. Journal of Cellular Biochemistry, 120, 18053–18065. https://doi.org/10.1002/jcb.29108.

    Article  CAS  PubMed  Google Scholar 

  25. Li, X., Wang, S. W., Li, X. L., Yu, F. Y., & Cong, H. M. (2020). Knockdown of long non-coding RNA TUG1 depresses apoptosis of hippocampal neurons in Alzheimer’s disease by elevating microRNA-15a and repressing ROCK1 expression. Inflammation Research, 69, 897–910. https://doi.org/10.1007/s00011-020-01364-8.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng, J., et al. (2017). Long nonding RNA UCA1 regulates neural stem cell differentiation by controlling miR-1/Hes1 expression. American Journal of Translational Research, 9, 3696–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, H. H., Li, C. X., & Tang, L. F. (2019). The differential expression profiles of miRNA-let 7a, 7b, and 7c in bronchoalveolar lavage fluid from infants with asthma and airway foreign bodies. Journal of Evidence-Based Integrative Medicine, 24, 2515690X18821906. doi:https://doi.org/10.1177/2515690X18821906.

  28. Korde, A., et al. (2020). An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. The Journal of Allergy and Clinical Immunology, 145, 550–562. https://doi.org/10.1016/j.jaci.2019.10.031.

    Article  CAS  PubMed  Google Scholar 

  29. Fang, L. et al. (2019). IgE Downregulates PTEN through MicroRNA-21–5p and stimulates airway smooth muscle cell remodeling. Internation Journal of Molecular Sciences, 20. doi:https://doi.org/10.3390/ijms20040875.

  30. Yu, Z. W., et al. (2019). Mutual regulation between miR-21 and the TGFbeta/Smad signaling pathway in human bronchial fibroblasts promotes airway remodeling. Journal of Asthma, 56, 341–349. https://doi.org/10.1080/02770903.2018.1455859.

    Article  CAS  Google Scholar 

  31. Yan, J., et al. (2019). miR-29b Reverses T helper 1 cells/T helper 2 cells imbalance and alleviates airway eosinophils recruitment in OVA-induced murine asthma by targeting inducible co-stimulator. International Archives of Allergy and Immunology, 180, 182–194. https://doi.org/10.1159/000501686.

    Article  CAS  PubMed  Google Scholar 

  32. Xiong, T., Du, Y., Fu, Z., & Geng, G. (2019). MicroRNA-145-5p promotes asthma pathogenesis by inhibiting kinesin family member 3A expression in mouse airway epithelial cells. Journal of International Medical Research, 47, 3307–3319. https://doi.org/10.1177/0300060518789819.

    Article  CAS  Google Scholar 

  33. Fan, L., et al. (2016). MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients. Experimental Lung Research, 42, 417–424. https://doi.org/10.1080/01902148.2016.1256452.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng, W., et al. (2016). MiR-143-3p controls TGF-beta1-induced cell proliferation and extracellular matrix production in airway smooth muscle via negative regulation of the nuclear factor of activated T cells 1. Molecular Immunology, 78, 133–139. https://doi.org/10.1016/j.molimm.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  35. Lyu, B., et al. (2020). MicroRNA-146a negatively regulates IL-33 in activated group 2 innate lymphoid cells by inhibiting IRAK1 and TRAF6. Genes and Immunity, 21, 37–44. https://doi.org/10.1038/s41435-019-0084-x.

    Article  CAS  PubMed  Google Scholar 

  36. Lambert, K. A., Roff, A. N., Panganiban, R. P., Douglas, S., & Ishmael, F. T. (2018). MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids. PLoS ONE, 13, e0205434. https://doi.org/10.1371/journal.pone.0205434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han, S., Ma, C., Bao, L., Lv, L., & Huang, M. (2018). miR-146a mimics attenuate allergic airway inflammation by impacted group 2 innate lymphoid cells in an ovalbumin-induced asthma mouse model. International Archives of Allergy and Immunology, 177, 302–310. https://doi.org/10.1159/000491438.

    Article  CAS  PubMed  Google Scholar 

  38. Comer, B. S., et al. (2014). MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 307, L727-734. https://doi.org/10.1152/ajplung.00174.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiu, L., et al. (2018). miR-155 modulates cockroach allergen- and oxidative stress-induced cyclooxygenase-2 in asthma. The Journal of Immunology, 201, 916–929. https://doi.org/10.4049/jimmunol.1701167.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Q., Wang, W., & Jing, W. (2019). Indoor air pollution aggravates asthma in Chinese children and induces the changes in serum level of miR-155. International Journal of Environmental Health Reseach, 29, 22–30. https://doi.org/10.1080/09603123.2018.1506569.

    Article  CAS  Google Scholar 

  41. Huo, X., et al. (2016). Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clinical and Experimental Allergy, 46, 1281–1290. https://doi.org/10.1111/cea.12754.

    Article  CAS  PubMed  Google Scholar 

  42. Kivihall, A., et al. (2019). Reduced expression of miR-146a in human bronchial epithelial cells alters neutrophil migration. Clinical Translational Allergy, 9, 62. https://doi.org/10.1186/s13601-019-0301-8.

    Article  CAS  PubMed  Google Scholar 

  43. Lv, X., Li, Y., Gong, Q., & Jiang, Z. (2019). TGF-beta1 induces airway smooth muscle cell proliferation and remodeling in asthmatic mice by up-regulating miR-181a and suppressing PTEN. International Journal of Clinical and Experimental Pathology, 12, 173–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, K., et al. (2018). Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology, 315, L253–L264. https://doi.org/10.1152/ajplung.00567.2017.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Y., et al. (2016). miRNA-221-3p enhances the secretion of interleukin-4 in Mast cells through the phosphatase and tensin homolog/p38/nuclear factor-kappab pathway. PLoS ONE, 11, e0148821. https://doi.org/10.1371/journal.pone.0148821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, D., Pan, J., Zhao, D., & Liu, F. (2018). MicroRNA-223 inhibits deposition of the extracellular matrix by airway smooth muscle cells through targeting IGF-1R in the PI3K/Akt pathway. American Journal of Translational Research, 10, 744–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X. Y., et al. (2018). GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sciences, 212, 93–101. https://doi.org/10.1016/j.lfs.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  48. Lin, L., et al. (2019). Upregulation of LncRNA Malat1 induced proliferation and migration of airway smooth muscle cells via miR-150-eIF4E/Akt signaling. Front Physiology, 10, 1337. https://doi.org/10.3389/fphys.2019.01337.

    Article  Google Scholar 

  49. Li, X., Ye, S., & Lu, Y. (2020). Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA-124 in asthma. Journal of Clinical Laboratory Analysis, 34, e23023. https://doi.org/10.1002/jcla.23023.

    Article  PubMed  Google Scholar 

  50. Veremeyko, T., Siddiqui, S., Sotnikov, I., Yung, A., & Ponomarev, E. D. (2013). IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PLoS ONE, 8, e81774. https://doi.org/10.1371/journal.pone.0081774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, J., Feng, X., Zhang, J., & Tong, Z. (2019). Long non-coding RNA TUG1 promotes airway smooth muscle cells proliferation and migration via sponging miR-590-5p/FGF1 in asthma. American Journal of Translational Research, 11, 3159–3166.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Austin, P. J., et al. (2017). Transcriptional profiling identifies the long non-coding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle. The Journal of Allergy and Clinical Immunology, 139, 780–789. https://doi.org/10.1016/j.jaci.2016.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qiu, Y. Y., et al. (2019). LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/ RORgammat. Biomedicine & Pharmacotherapy, 111, 386–394. https://doi.org/10.1016/j.biopha.2018.12.080.

    Article  CAS  Google Scholar 

  54. Liu, J. H., Li, C., Zhang, C. H., & Zhang, Z. H. (2020). LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology, 26, 18–26. https://doi.org/10.1016/j.pulmoe.2019.07.001.

    Article  PubMed  Google Scholar 

  55. Chen, H., Yang, J., & Tan, Z. (2019). Upregulation of microRNA-9-5p inhibits apoptosis of chondrocytes through downregulating Tnc in mice with osteoarthritis following tibial plateau fracture. Journal of Cellular Physiology, 234, 23326–23336. https://doi.org/10.1002/jcp.28900.

    Article  CAS  PubMed  Google Scholar 

  56. Tian, F., Wang, J., Zhang, Z., & Yang, J. (2020). LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Biological Research, 53, 9. https://doi.org/10.1186/s40659-020-00275-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ji, Q., Qiao, X., Liu, Y., Wang, D., & Yan, J. (2020). Silencing of longchain non-coding RNA GAS5 in osteoarthritic chondrocytes is mediated by targeting the miR34a/Bcl2 axis. Molecular Medicine Reports, 21, 1310–1319. https://doi.org/10.3892/mmr.2019.10900.

    Article  CAS  PubMed  Google Scholar 

  58. Rezaeepoor, M., et al. (2018). Semaphorin-3A as an immune modulator is suppressed by MicroRNA-145-5p. Cell Journal, 20, 113–119. https://doi.org/10.22074/cellj.2018.4842.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hu, Y., Li, S., & Zou, Y. (2019). Knockdown of LncRNA H19 relieves LPS-induced damage by modulating miR-130a in osteoarthritis. Yonsei Medical Journal, 60, 381–388. https://doi.org/10.3349/ymj.2019.60.4.381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, X., Liu, X., Ni, X., Feng, P., & Wang, Y. U. (2019). Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. Journal of Biosciences, 44.

    Google Scholar 

  61. Fu, X., et al. (2020). LncRNA-H19 silencing suppresses synoviocytes proliferation and attenuates collagen-induced arthritis progression by modulating miR-124a. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keaa395.

    Article  Google Scholar 

  62. Liu, C., Ren, S., Zhao, S., & Wang, Y. (2019). LncRNA MALAT1/MiR-145 Adjusts IL-1beta-induced chondrocytes viability and cartilage matrix degradation by regulating ADAMTS5 in human osteoarthritis. Yonsei Medical Journal, 60, 1081–1092. https://doi.org/10.3349/ymj.2019.60.11.1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, H., Xie, S., Li, H., Zhang, R., & Zhang, H. (2020). LncRNA MALAT1 mediates proliferation of LPS treated-articular chondrocytes by targeting the miR-146a-PI3K/Akt/mTOR axis. Life Sciences, 254, 116801. https://doi.org/10.1016/j.lfs.2019.116801.

    Article  CAS  PubMed  Google Scholar 

  64. Hu, G., et al. (2017). MicroRNA-145 attenuates TNF-alpha-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4. Cell Death Disease, 8, e3140. https://doi.org/10.1038/cddis.2017.522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, L., Lv, G., Wang, B., & Kuang, L. (2018). The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochemical and Biophysical Research Communications, 503, 2555–2562. https://doi.org/10.1016/j.bbrc.2018.07.015.

    Article  CAS  PubMed  Google Scholar 

  66. Li, L., Lv, G., Wang, B., & Kuang, L. (2020). XIST/miR-376c-5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis. Journal of Cellular Physiology, 235, 281–293. https://doi.org/10.1002/jcp.28968.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Z., Hao, J., & Chen, D. (2019). Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) regulates proliferation, apoptosis, and inflammation of chondrocytes via the miR-181a/Glycerol-3-phosphate dehydrogenase 1-Like (GPD1L) axis. Medical Science Monitor, 25, 8084–8094. https://doi.org/10.12659/MSM.918416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, L. M., & Yang, M. (2019). The suppression of miR-181 inhibits inflammatory responses of osteoarthritis through NF-kappaB signaling pathway. European Review for Medical and Pharmacological Sciences, 23, 5567–5574. https://doi.org/10.26355/eurrev_201907_18290.

    Article  PubMed  Google Scholar 

  69. Zhao, Y., Zhao, J., Guo, X., She, J., & Liu, Y. (2018). Long non-coding RNA PVT1, a molecular sponge for miR-149, contributes aberrant metabolic dysfunction and inflammation in IL-1beta-simulated osteoarthritic chondrocytes. Bioscience Reports, 38. doi:https://doi.org/10.1042/BSR20180576.

  70. Li, Y., Li, S., Luo, Y., Liu, Y., & Yu, N. (2017). LncRNA PVT1 regulates chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-488-3p. DNA and Cell Biology, 36, 571–580. https://doi.org/10.1089/dna.2017.3678.

    Article  CAS  PubMed  Google Scholar 

  71. Jin, S., et al. (2018). Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Annals of the Rheumatic Diseases, 77, 1644–1652. https://doi.org/10.1136/annrheumdis-2018-213511.

    Article  CAS  PubMed  Google Scholar 

  72. Gu, J., et al. (2018). Maresin 1 attenuates mitochondrial dysfunction through the ALX/cAMP/ROS pathway in the cecal ligation and puncture mouse model and sepsis patients. Laboratory Investigation, 98, 715–733. https://doi.org/10.1038/s41374-018-0031-x.

    Article  CAS  PubMed  Google Scholar 

  73. Hu, S. L., et al. (2017). Myostatin promotes interleukin-1beta expression in rheumatoid arthritis synovial fibroblasts through inhibition of miR-21-5p. Front Immunology, 8, 1747. https://doi.org/10.3389/fimmu.2017.01747.

    Article  CAS  Google Scholar 

  74. Dang, Q., et al. (2017). Inhibition of microRNA-34a ameliorates murine collagen-induced arthritis. Experimental and Therapeutic Medicine, 14, 1633–1639. https://doi.org/10.3892/etm.2017.4708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, H. W., et al. (2016). Effect of miR-19a and miR-21 on the JAK/STAT signaling pathway in the peripheral blood mononuclear cells of patients with systemic juvenile idiopathic arthritis. Experimental and Therapeutic Medicine, 11, 2531–2536. https://doi.org/10.3892/etm.2016.3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Le, L. T., et al. (2016). The microRNA-29 family in cartilage homeostasis and osteoarthritis. Journal of Molecular Medicine (Berl), 94, 583–596. https://doi.org/10.1007/s00109-015-1374-z.

    Article  CAS  Google Scholar 

  77. Hong, B. K., et al. (2017). MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Experimental & Molecular Medicine, 49, e363. https://doi.org/10.1038/emm.2017.108.

    Article  CAS  Google Scholar 

  78. Zhong, F., et al. (2018). miR-145 eliminates lipopolysaccharides-induced inflammatory injury in human fibroblast-like synoviocyte MH7A cells. Journal of Cellular Biochemistry, 119, 10059–10066. https://doi.org/10.1002/jcb.27341.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Q. B., et al. (2018). Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome. Arthritis Research and Therapy, 20, 45. https://doi.org/10.1186/s13075-018-1546-7.

    Article  CAS  PubMed  Google Scholar 

  80. Chen, Z., Wang, H., Xia, Y., Yan, F., & Lu, Y. (2018). Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. The Journal of Immunology, 201, 2472–2482. https://doi.org/10.4049/jimmunol.1800304.

    Article  CAS  PubMed  Google Scholar 

  81. Paoletti, A., et al. (2019). Monocyte/macrophage abnormalities specific to rheumatoid arthritis are linked to miR-155 and are differentially modulated by different TNF inhibitors. The Journal of Immunology, 203, 1766–1775. https://doi.org/10.4049/jimmunol.1900386.

    Article  CAS  PubMed  Google Scholar 

  82. Kurowska-Stolarska, M., et al. (2011). MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proceedings of the National Academy Sciences of the United States of America, 108, 11193–11198. https://doi.org/10.1073/pnas.1019536108.

    Article  CAS  Google Scholar 

  83. Wang, Y., et al. (2020). miR-155 promotes fibroblast-like synoviocyte proliferation and inflammatory cytokine secretion in rheumatoid arthritis by targeting FOXO3a. Experimental and Therapeutic Medicine, 19, 1288–1296. https://doi.org/10.3892/etm.2019.8330.

    Article  CAS  PubMed  Google Scholar 

  84. Xie, Z. et al. PU.1 attenuates TNFalphainduced proliferation and cytokine release of rheumatoid arthritis fibroblastlike synoviocytes by regulating miR155 activity. Molecular Medicine Reports, 17, 8349–8356. doi:https://doi.org/10.3892/mmr.2018.8920.

  85. Alivernini, S. et al. (2016). MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nature Communications, 7, 12970. doi:https://doi.org/10.1038/ncomms12970.

  86. Wu, X. F., Zhou, Z. H., & Zou, J. (2017). MicroRNA-181 inhibits proliferation and promotes apoptosis of chondrocytes in osteoarthritis by targeting PTEN. Biochemistry and Cell Biology, 95, 437–444. https://doi.org/10.1139/bcb-2016-0078.

    Article  CAS  PubMed  Google Scholar 

  87. Zheng, X., et al. (2017). Downregulation of miR-221-3p contributes to IL-1beta-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway. Journal of Molecular Medicine (Berl), 95, 615–627. https://doi.org/10.1007/s00109-017-1516-6.

    Article  CAS  Google Scholar 

  88. Haneklaus, M., et al. (2012). Cutting edge: MiR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. The Journal of Immunology, 189, 3795–3799. https://doi.org/10.4049/jimmunol.1200312.

    Article  CAS  PubMed  Google Scholar 

  89. Ogando, J., et al. (2016). Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients. Scientific Reports, 6, 20223. https://doi.org/10.1038/srep20223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu, H. T., Gu, C. Z., & Chen, J. Q. (2019). MiR-9 facilitates cartilage regeneration of osteoarthritis in rabbits through regulating Notch signaling pathway. European Review for Medical and Pharmacological Sciences, 23, 5051–5058. https://doi.org/10.26355/eurrev_201906_18168.

    Article  PubMed  Google Scholar 

  91. Hu, S., et al. (2019). MicroRNA-455-3p promotes TGF-beta signaling and inhibits osteoarthritis development by directly targeting PAK2. Experimental & Molecular Medicine, 51, 1–13. https://doi.org/10.1038/s12276-019-0322-3.

    Article  CAS  Google Scholar 

  92. Zhou, X., et al. (2019). Role of the ciRs-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL-1beta. International Immunopharmacology, 71, 233–240. https://doi.org/10.1016/j.intimp.2019.03.037.

    Article  CAS  PubMed  Google Scholar 

  93. Wei, B., Wei, W., Zhao, B., Guo, X., & Liu, S. (2017). Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS ONE, 12, e0169097. https://doi.org/10.1371/journal.pone.0169097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiao, Y., Yan, X., Yang, Y., & Ma, X. (2019). Downregulation of long non-coding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway. Biomedicine & Pharmacotherapy, 109, 1569–1577. https://doi.org/10.1016/j.biopha.2018.10.181.

    Article  CAS  Google Scholar 

  95. Wang, A., et al. (2019). MEG3 promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-361-5p/FOXO1 axis. BMC Medical Genomics, 12, 201. https://doi.org/10.1186/s12920-019-0649-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, G., et al. (2019). LncRNA MEG3 inhibits rheumatoid arthritis through miR-141 and inactivation of AKT/mTOR signalling pathway. Journal of Cellular and Molecular Medicine, 23, 7116–7120. https://doi.org/10.1111/jcmm.14591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ye, Y., Gao, X., & Yang, N. (2018). LncRNA ZFAS1 promotes cell migration and invasion of fibroblast-like synoviocytes by suppression of miR-27a in rheumatoid arthritis. Human Cell, 31, 14–21. https://doi.org/10.1007/s13577-017-0179-5.

    Article  CAS  PubMed  Google Scholar 

  98. Lv, W., et al. (2018). Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiological Genomics, 50, 20–34. https://doi.org/10.1152/physiolgenomics.00039.2017.

    Article  CAS  PubMed  Google Scholar 

  99. Loboda, A., Sobczak, M., Jozkowicz, A., & Dulak, J. (2016). TGF-beta1/Smads and miR-21 in renal fibrosis and inflammation. Mediators of Inflammation, 2016, 8319283. https://doi.org/10.1155/2016/8319283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, X., Wei, Y., & Wang, Z. (2018). microRNA-21 and hypertension. Hypertension Research, 41, 649–661. https://doi.org/10.1038/s41440-018-0071-z.

    Article  CAS  PubMed  Google Scholar 

  101. Yu, Y., et al. (2020). Long non-coding RNA-GAS5 retards renal fibrosis through repressing miR-21 activity. Experimental and Molecular Pathology, 116, 104518. https://doi.org/10.1016/j.yexmp.2020.104518.

    Article  CAS  PubMed  Google Scholar 

  102. Pan, T., et al. (2019). Delayed remote ischemic preconditioning confersrenoprotection against septic acute kidney injury via exosomal miR-21. Theranostics, 9, 405–423. https://doi.org/10.7150/thno.29832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, R., et al. (2018). Inhibition of maternally expressed gene 3 attenuated lipopolysaccharide-induced apoptosis through sponging miR-21 in renal tubular epithelial cells. Journal of Cellular Biochemistry, 119, 7800–7806. https://doi.org/10.1002/jcb.27163.

    Article  CAS  PubMed  Google Scholar 

  104. Wang, P. et al. (2018). Long non-coding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-beta/Smad3 pathway. Science Translational Medicine, 10. doi:https://doi.org/10.1126/scitranslmed.aat2039.

  105. Zhang, C., et al. (2019). miR-30c-5p reduces renal ischemia-reperfusion involving macrophage. Medical Science Monitor, 25, 4362–4369. https://doi.org/10.12659/MSM.914579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, J., et al. (2019). MicroRNA-145 promotes the epithelial-mesenchymal transition in peritoneal dialysis-associated fibrosis by suppressing fibroblast growth factor 10. Journal of Biological Chemistry, 294, 15052–15067. https://doi.org/10.1074/jbc.RA119.007404.

    Article  CAS  Google Scholar 

  107. Huang, Y., et al. (2018). Regulation and mechanism of miR-146 on renal ischemia reperfusion injury. Die Pharmazie, 73, 29–34. https://doi.org/10.1691/ph.2018.7776.

    Article  CAS  PubMed  Google Scholar 

  108. Wu, H., et al. (2016). MiR-155 is involved in renal ischemia-reperfusion injury via direct targeting of FoxO3a and regulating renal tubular cell Pyroptosis. Cellular Physiology and Biochemistry, 40, 1692–1705. https://doi.org/10.1159/000453218.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, X. B., et al. (2019). Inhibition of miR-155 ameliorates acute kidney injury by apoptosis involving the regulation on TCF4/Wnt/beta-catenin pathway. Nephron, 143, 135–147. https://doi.org/10.1159/000501038.

    Article  CAS  PubMed  Google Scholar 

  110. Li, X., et al. (2017). Long non-coding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Experimental Cell Research, 350, 327–335. https://doi.org/10.1016/j.yexcr.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  111. Tian, H., et al. (2018). The long non-coding RNA MALAT1 is increased in renal ischemia-reperfusion injury and inhibits hypoxia-induced inflammation. Renal Failure, 40, 527–533. https://doi.org/10.1080/0886022X.2018.1487863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ding, Y., et al. (2018). Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-kappaB signaling pathway. International Journal of Molecular Medicine, 41, 446–454. https://doi.org/10.3892/ijmm.2017.3232.

    Article  CAS  PubMed  Google Scholar 

  113. Jiang, X., Li, D., Shen, W., Shen, X., & Liu, Y. (2019). LncRNA NEAT1 promotes hypoxia-induced renal tubular epithelial apoptosis through downregulating miR-27a-3p. Journal of Cellular Biochemistry, 120, 16273–16282. https://doi.org/10.1002/jcb.28909.

    Article  CAS  PubMed  Google Scholar 

  114. Zhu, Y., et al. (2020). The long non-coding RNA ANRIL promotes cell apoptosis in lipopolysaccharide-induced acute kidney injury mediated by the TLR4/Nuclear factor-kappa B pathway. Kidney Blood Pressure Research, 45, 209–221. https://doi.org/10.1159/000505154.

    Article  CAS  PubMed  Google Scholar 

  115. Xie, C., Wu, W., Tang, A., Luo, N., & Tan, Y. (2019). lncRNA GAS5/miR-452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells. Diabetes, Metabolic Syndrome and Obesity, 12, 2609–2617. https://doi.org/10.2147/DMSO.S228654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jiang, Z. J., Zhang, M. Y., Fan, Z. W., Sun, W. L., & Tang, Y. (2019). Influence of lncRNA HOTAIR on acute kidney injury in sepsis rats through regulating miR-34a/Bcl-2 pathway. European Review for Medical and Pharmacological Sciences, 23, 3512–3519. https://doi.org/10.26355/eurrev_201904_17717.

    Article  PubMed  Google Scholar 

  117. Powell, L., et al. (2018). Rapid and sensitive detection of viral nucleic acids using silicon microchips. Analyst, 143, 2596–2603. https://doi.org/10.1039/c8an00552d.

    Article  CAS  PubMed  Google Scholar 

  118. Cornelis, S., et al. (2018). Multiplex STR amplification sensitivity in a silicon microchip. Scientific Reports, 8, 9853. https://doi.org/10.1038/s41598-018-28229-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, H., et al. (2017). A portable microfluidic platform for rapid molecular diagnostic testing of patients with myeloproliferative neoplasms. Scientific Reports, 7, 8596. https://doi.org/10.1038/s41598-017-08674-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Magrabi, F., et al. (2019). Artificial intelligence in clinical decision support: Challenges for evaluating AI and practical implications. Yearbook of Medical Informatics, 28, 128–134. https://doi.org/10.1055/s-0039-1677903.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yu, K. H., & Kohane, I. S. (2019). Framing the challenges of artificial intelligence in medicine. BMJ Quality and Safety, 28, 238–241. https://doi.org/10.1136/bmjqs-2018-008551.

    Article  PubMed  Google Scholar 

  122. Kanagasingam, Y., et al. (2018). Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. JAMA Network Open, 1, e182665. https://doi.org/10.1001/jamanetworkopen.2018.2665.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16, 703–715. https://doi.org/10.1038/s41571-019-0252-y.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Willemink, M. J., et al. (2020). Preparing medical imaging data for machine learning. Radiology, 295, 4–15. https://doi.org/10.1148/radiol.2020192224.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zou, X., Gao, X., & Chen, W. (2019). Deep learning deepens the analysis of alternative splicing. Genomics Proteomics Bioinformatics, 17, 219–221. https://doi.org/10.1016/j.gpb.2019.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Han, S., et al. (2019). LncFinder: An integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property. Briefings in Bioinformatics, 20, 2009–2027. https://doi.org/10.1093/bib/bby065.

    Article  CAS  PubMed  Google Scholar 

  127. Kario, K. (2020). Management of hypertension in the digital Era: Small wearable monitoring devices for remote blood pressure monitoring. Hypertension, 76, 640–650. https://doi.org/10.1161/HYPERTENSIONAHA.120.14742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fraser, K. C., Meltzer, J. A., & Rudzicz, F. (2016). Linguistic features identify Alzheimer’s disease in narrative speech. Journal of Alzheimer’s Disease, 49, 407–422. https://doi.org/10.3233/JAD-150520.

    Article  PubMed  Google Scholar 

  129. Wainberg, M., Merico, D., Delong, A., & Frey, B. J. (2018). Deep learning in biomedicine. Nature Biotechnology, 36, 829–838. https://doi.org/10.1038/nbt.4233.

    Article  CAS  PubMed  Google Scholar 

  130. Xu, C., & Jackson, S. A. (2019). Machine learning and complex biological data. Genome Biology, 20, 76. https://doi.org/10.1186/s13059-019-1689-0.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19, 281. https://doi.org/10.1186/s12911-019-1004-8.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hermans, B. J. M. et al. (2018). Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis. Europace, 20, iii113–iii119. doi:https://doi.org/10.1093/europace/euy243.

  133. Kakadiaris, I. A., et al. (2018). Machine learning outperforms ACC / AHA CVD risk calculator in MESA. Journal of the American Heart Association, 7, e009476. https://doi.org/10.1161/JAHA.118.009476.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Nanayakkara, S., et al. (2018). Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study. PLoS Medicine, 15, e1002709. https://doi.org/10.1371/journal.pmed.1002709.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hae, H., et al. (2018). Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation. PLoS Medicine, 15, e1002693. https://doi.org/10.1371/journal.pmed.1002693.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Angraal, S., et al. (2020). Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction. JACC Heart Fail, 8, 12–21. https://doi.org/10.1016/j.jchf.2019.06.013.

    Article  PubMed  Google Scholar 

  137. Samad, M. D., et al. (2018). Predicting deterioration of ventricular function in patients with repaired tetralogy of fallot using machine learning. European Heart Journal Cardiovascular Imaging, 19, 730–738. https://doi.org/10.1093/ehjci/jey003.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wang, X. B., Cui, N. H., Liu, X., & Ming, L. (2019). Identification of a blood-based 12-gene signature that predicts the severity of coronary artery stenosis: An integrative approach based on gene network construction, Support Vector Machine algorithm, and multi-cohort validation. Atherosclerosis, 291, 34–43. https://doi.org/10.1016/j.atherosclerosis.2019.10.001.

    Article  CAS  PubMed  Google Scholar 

  139. Zhao, D., et al. (2019). A reliable method for colorectal cancer prediction based on feature selection and support vector machine. Medical and Biological Engineering and Computing, 57, 901–912. https://doi.org/10.1007/s11517-018-1930-0.

    Article  PubMed  Google Scholar 

  140. Wang, S., & Cai, Y. (1864). Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis. Biochimica et Biophysica Acta Molecular Basis Disease, 2218–2227, 2018. https://doi.org/10.1016/j.bbadis.2017.12.026.

    Article  CAS  Google Scholar 

  141. Huang, S., et al. (2018). Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics & Proteomics, 15, 41–51. https://doi.org/10.21873/cgp.20063.

    Article  CAS  Google Scholar 

  142. Frizzell, J. D., et al. (2017). Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches. JAMA Cardiology, 2, 204–209. https://doi.org/10.1001/jamacardio.2016.3956.

    Article  PubMed  Google Scholar 

  143. Postma, G. J., Krooshof, P. W., & Buydens, L. M. (2011). Opening the kernel of kernel partial least squares and support vector machines. Analytica Chimica Acta, 705, 123–134. https://doi.org/10.1016/j.aca.2011.04.025.

    Article  CAS  PubMed  Google Scholar 

  144. Esteva, A., et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25, 24–29. https://doi.org/10.1038/s41591-018-0316-z.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, S., Bamakan, S. M. H., Qu, Q., & Li, S. (2019). Learning for personalized medicine: A comprehensive review from a deep learning perspective. IEEE Reviews in Biomedical Engineering, 12, 194–208. https://doi.org/10.1109/RBME.2018.2864254.

    Article  PubMed  Google Scholar 

  146. Kalinin, A. A., et al. (2018). Deep learning in pharmacogenomics: From gene regulation to patient stratification. Pharmacogenomics, 19, 629–650. https://doi.org/10.2217/pgs-2018-0008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Serre, T. (2019). Deep learning: The good, the bad, and the ugly. Annual Review of Vision Science, 5, 399–426. https://doi.org/10.1146/annurev-vision-091718-014951.

    Article  PubMed  Google Scholar 

  148. Dalca, A. V., et al. (2019). Unsupervised deep learning for bayesian brain MRI segmentation. Medical Image Computing and Computer Assisted Intervention, 11766, 356–365. https://doi.org/10.1007/978-3-030-32248-9_40.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sari, C. T., & Gunduz-Demir, C. (2019). Unsupervised feature extraction via deep learning for histopathological classification of colon tissue images. IEEE Transactions on Medical Imaging, 38, 1139–1149. https://doi.org/10.1109/TMI.2018.2879369.

    Article  PubMed  Google Scholar 

  150. Johnson, K. W., et al. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71, 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521.

    Article  PubMed  Google Scholar 

  151. Altman, N., & Krzywinski, M. (2018). The curse(s) of dimensionality. Nature Methods, 15, 399–400. https://doi.org/10.1038/s41592-018-0019-x.

    Article  CAS  PubMed  Google Scholar 

  152. Navickas, R., et al. (2016). Identifying circulating microRNAs as biomarkers of cardiovascular disease: A systematic review. Cardiovascular Research, 111, 322–337. https://doi.org/10.1093/cvr/cvw174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Whiting, P. F., et al. (2011). QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155, 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

    Article  PubMed  Google Scholar 

  154. Lee, D. H., et al. (2010). Differential associations of weight dynamics with coronary artery calcium versus common carotid artery intima-media thickness: The CARDIA Study. American Journal of Epidemiology, 172, 180–189. https://doi.org/10.1093/aje/kwq093.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Holvoet .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holvoet, P. (2021). The Impact of Non-coding RNA Networks on Disease Comorbidity: Cardiometabolic Diseases, Inflammatory Diseases, and Cancer. In: Non-coding RNAs at the Cross-Road of Cardiometabolic Diseases and Cancer . Springer, Cham. https://doi.org/10.1007/978-3-030-68844-8_10

Download citation

Publish with us

Policies and ethics