Skip to main content

Recent Advancement of Interdigital Sensor for Nitrate Monitoring in Water

  • Chapter
  • First Online:
Interdigital Sensors

Abstract

Water contamination is a significant problem in all over the world, and it is crucial to monitor the contaminating nutrients regularly for keeping the groundwater or drinking water safe. The nitrate ion has a remarkable impact on human health and the environment, and excessive use of this ion might damage the ecological system and the natural environments. Nitrate ions can be detected through various laboratory-based methods or in-situ sensor-based methods to develop a monitoring system. But for the last few years, the Interdigital sensor is used to detect the nitrate ions due to their reasonable fabrication costs and secure sensing mechanism. Some such sensors have high sensitivity with a reasonable limit of detection (LOD). Others might have a reasonable sensitivity with the reduced cost, where the proposed detection method uses a sensor-based portable sensing system. This chapter discusses the different working principles and fabrication methods of the Interdigital sensor for nitrate ions detection in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Berner, R. Berner,The Global Water Cycle Prentice Hall,New Jersey (1987)

    Google Scholar 

  2. M.E.E. Alahi, S.C. Mukhopadhyay, Detection methods of nitrate in water: a review. Sens. Actuators, A 280, 210–221 (2018)

    Article  Google Scholar 

  3. H.H. Comly, Cyanosis in infants caused by nitrates in well water. J. Am. Med. Assoc. 129(2), 112–116 (1945)

    Article  Google Scholar 

  4. P. Brimblecombe, D. Stedman, Historical evidence for a dramatic increase in the nitrate component of acid rain. Nature 298(5873), 460–462 (1982)

    Article  Google Scholar 

  5. M.S. Finch, D.J. Hydes, C.H. Clayson, B. Weigl, J. Dakin, P. Gwilliam, A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials. Anal. Chim. Acta 377(2–3), 167–177 (1998)

    Article  Google Scholar 

  6. M.A. Ferree, R.D. Shannon, Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Res. 35(1), 327–332 (2001)

    Article  Google Scholar 

  7. M. Abbas, G. Mostafa, Determination of traces of nitrite and nitrate in water by solid phase spectrophotometry. Anal. Chim. Acta 410(1–2), 185–192 (2000)

    Article  Google Scholar 

  8. K.M. Miranda, M.G. Espey, D.A. Wink, A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5(1), 62–71 (2001)

    Article  Google Scholar 

  9. K. Sastry, R. Moudgal, J. Mohan, J. Tyagi, G. Rao, Spectrophotometric determination of serum nitrite and nitrate by copper–cadmium alloy. Anal. Biochem. 306(1), 79–82 (2002)

    Article  Google Scholar 

  10. T.A. Doane, W.R. Horwáth, Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 36(12), 2713–2722 (2003)

    Article  Google Scholar 

  11. A. Drolc, J. Vrtovšek, Nitrate and nitrite nitrogen determination in waste water using on-line UV spectrometric method. Biores. Technol. 101(11), 4228–4233 (2010)

    Article  Google Scholar 

  12. M.J. Moorcroft, J. Davis, R.G. Compton, Detection and determination of nitrate and nitrite: a review. Talanta 54(5), 785–803 (2001)

    Article  Google Scholar 

  13. A. Dudwadkar, N. Shenoy, J. Joshi, S.D. Kumar, H. Rao, A. Reddy, Application of ion chromatography for the determination of nitrate in process streams of thermal denitration plant. Sep. Sci. Technol. 48(16), 2425–2430 (2013)

    Article  Google Scholar 

  14. X.-H. Pham et al., Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens. Actuators B: Chem. 193, 815–822 (2014)

    Article  Google Scholar 

  15. X. Wang, Y. Wang, H. Leung, S.C. Mukhopadhyay, M. Tian, J. Zhou, Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans. Instrum. Meas. 64(2), 516–523 (2014)

    Article  Google Scholar 

  16. B. Schazmann, D. Diamond, Improved nitrate sensing using ion selective electrodes based on urea–calixarene ionophores. New J. Chem. 31(4), 587–592 (2007)

    Article  Google Scholar 

  17. B.A. Pellerin, B.A. Bergamaschi, B.D. Downing, J.F. Saraceno, J.D. Garrett, L.D. Olsen,Optical techniques for the determination of nitrate in environmental waters: guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting,US Geological Survey Techniques and Methods, pp. 1–D5, (2013)

    Google Scholar 

  18. A.A. Ensafi, M. Amini, Highly selective optical nitrite sensor for food analysis based on Lauth’s violet–triacetyl cellulose membrane film. Food Chem. 132(3), 1600–1606 (2012)

    Article  Google Scholar 

  19. G. Pandey, R. Kumar, R.J. Weber,Real time detection of soil moisture and nitrates using on-board in-situ impedance spectroscopy, in 2013 IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2013), pp. 1081–1086

    Google Scholar 

  20. M.E.E. Alahi, S.C. Mukhopadhyay,Interdigitated Senor and Electrochemical Impedance Spectroscopy (EIS),in Smart Nitrate Sensor (Springer, 2019), pp. 43–52

    Google Scholar 

  21. A. Nag, M.E.E. Alahi, S. Feng, S.C. Mukhopadhyay, IoT-based sensing system for phosphate detection using graphite/PDMS sensors. Sens. Actuators, A 286, 43–50 (2019)

    Article  Google Scholar 

  22. A. Nag, S. Mukhopadhyay, J. Kosel,Transparent biocompatible sensor patches for touch sensitive prosthetic limbs,in 2016 10th International Conference on Sensing Technology (ICST) (IEEE, 2016), pp. 1–6

    Google Scholar 

  23. N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger, Development of IoT-based impedometric biosensor for point-of-care monitoring of bone loss. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(2), 211–220 (2018)

    Article  Google Scholar 

  24. N.J. Goldfine, A.P. Washabaugh, J.V. Dearlove, P.A. von Guggenberg,Imposed ω-k magnetometer and dielectrometer applications,in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1993), pp. 1115–1122

    Google Scholar 

  25. Y. Sheiretov, M. Zahn, Dielectrometry measurements of moisture dynamics in oil-impregnated pressboard. IEEE Trans. Dielectr. Electr. Insul. 2(3), 329–351 (1995)

    Article  Google Scholar 

  26. M.E. Alahi, L. Xie, A.I. Zia, S. Mukhopadhyay, L. Burkitt,Practical nitrate sensor based on electrochemical impedance measurement,in 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (IEEE, 2016), pp. 1–6

    Google Scholar 

  27. M.E.E. Alahi, X. Li, S. Mukhopadhyay, L. Burkitt,A temperature compensated smart nitrate-sensor for agricultural industry.IEEE Trans. Ind. Electron. (2017)

    Google Scholar 

  28. M.E.E. Alahi, S.C. Mukhopadhyay, L. Burkitt, Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens. Actuators B: Chem. 259, 753–761 (2018)

    Article  Google Scholar 

  29. M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators, A 269, 79–90 (2018)

    Article  Google Scholar 

  30. M.E.E. Alahi, S.C. Mukhopadhyay,Graphite/PDMS capacitive sensor for nitrate measurement,in Smart Nitrate Sensor (Springer, 2019), pp. 73–89

    Google Scholar 

  31. M.E.E. Alahi, S.C. Mukhopadhyay,Temperature compensation for low concentration nitrate measurement,in Smart Nitrate Sensor (Springer, 2019), pp. 53–72

    Google Scholar 

  32. M.E.E. Alahi, S.C. Mukhopadhyay,Preparation and characterization of the selectivity material of nitrate sensor,in Smart Nitrate Sensor (Springer, 2019), pp. 91–113

    Google Scholar 

  33. M.E.E. Alahi, N. Pereira-Ishak, S.C. Mukhopadhyay, L. Burkitt, An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J. 5(6), 4409–4417 (2018)

    Article  Google Scholar 

  34. A. Azmi, A.A. Azman, S. Ibrahim, M.A.M. Yunus,Techniques in advancing the capabilities of various nitrate detection methods: a review.Int. J. Smart Sens. Intell. Syst. 10(2) (2017)

    Google Scholar 

  35. M. Zaretsky, J. Melcher,Complex permittivity measurements of thin films using microdielectrometry,in Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1986 (IEEE, 1986), pp. 462–471

    Google Scholar 

  36. N. Goldfine, Y. Sheiretov, A. Washabaugh, V. Zilberstein, S. Kenny, P. Crowther, Materials characterisation and flaw detection for metallic coating repairs. Insight 42(12), 809–814 (2000)

    Google Scholar 

  37. M.E. Van Steenberg, A. Washabaugh, N. Goldfine,Inductive and capacitive sensor arrays for in situ composition sensors,in 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), vol. 1 (IEEE, 2001), pp. 1/299–1/309

    Google Scholar 

  38. A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)

    Article  Google Scholar 

  39. N. Goldfine, V. Zilberstein, J.S. Cargill, D. Schlicker, I. Shay, Meandering winding magnetometer array eddy current sensors for detection of cracks in regions with fretting damage. Mater. Eval. 60(7), 870–877 (2002)

    Google Scholar 

  40. G. Ellis, I. Adatia, M. Yazdanpanah, S.K. Makela, Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin. Biochem. 31(4), 195–220 (1998)

    Article  Google Scholar 

  41. M.A.M. Yunus, S.C. Mukhopadhyay, Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sens. J. 11(6), 1440–1447 (2010)

    Article  Google Scholar 

  42. A.S.M. Nor, M.A.M. Yunus, S.W. Nawawi, S. Ibrahim,Low-cost sensor array design optimization based on planar electromagnetic sensor design for detecting nitrate and sulphate,in 2013 Seventh International Conference on Sensing Technology (ICST) (IEEE, 2013), pp. 693–698

    Google Scholar 

  43. M.A.M. Yunus, S. Mukhopadhyay, A. Punchihewa,Application of independent component analysis for estimating nitrate contamination in natural water sources using planar electromagnetic sensor,in 2011 Fifth International Conference on Sensing Technology (IEEE, 2011), pp. 538–543

    Google Scholar 

  44. N. Herzer, S. Hoeppener, U.S. Schubert, Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem. Commun. 46(31), 5634–5652 (2010)

    Article  Google Scholar 

  45. S. Khumpuang, H. Maekawa, S. Hara, Photolithography for minimal fab system. IEEJ Trans. Sens. Micromachines 133(9), 272–277 (2013)

    Article  Google Scholar 

  46. D.J. Harris, H. Hu, J.C. Conrad, J.A. Lewis, Patterning colloidal films via evaporative lithography. Phys. Rev. Lett. 98(14), 148301 (2007)

    Article  Google Scholar 

  47. A. Nag, A.I. Zia, X. Li, S.C. Mukhopadhyay, J. Kosel, Novel sensing approach for LPG leakage detection: Part I—operating mechanism and preliminary results. IEEE Sens. J. 16(4), 996–1003 (2016)

    Article  Google Scholar 

  48. H.S. Lee, J.-B. Yoon, A simple and effective lift-off with positive photoresist. J. Micromech. Microeng. 15(11), 2136 (2005)

    Article  Google Scholar 

  49. S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, T. Kanamori, Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens. Actuators, A 140(2), 176–184 (2007)

    Article  Google Scholar 

  50. Photoresists. https://www.photochembgsu.com/applications/photoresists.html

  51. E. Barborini et al., Batch fabrication of metal oxide sensors on micro-hotplates. J. Micromech. Microeng. 18(5), 055015 (2008)

    Article  Google Scholar 

  52. P. Data,SU-8 Developer

    Google Scholar 

  53. D. Zhuang, J. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng.: R: Rep. 48(1), 1–46 (2005)

    Article  Google Scholar 

  54. R.A. Powell, Dry Etching for Microelectronics (Elsevier, 2012)

    Google Scholar 

  55. S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, All-solid-state lithium ion battery using garnet-type oxide and Li 3 BO 3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013)

    Article  Google Scholar 

  56. S. Khan, L. Lorenzelli, R. Dahiya,Bendable piezoresistive sensors by screen printing MWCNT/PDMS composites on flexible substrates,in 2014 10th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME) (IEEE, 2014), pp. 1–4

    Google Scholar 

  57. Meshed screen printing. https://www.polyestermeshfabric.com/technology/use-screen-printing.html

  58. S. Merilampi, T. Laine-Ma, P. Ruuskanen, The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron. Reliab. 49(7), 782–790 (2009)

    Article  Google Scholar 

  59. J. Ping, J. Wu, Y. Wang, Y. Ying, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 34(1), 70–76 (2012)

    Article  Google Scholar 

  60. D.A. Pardo, G.E. Jabbour, N. Peyghambarian, Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12(17), 1249–1252 (2000)

    Article  Google Scholar 

  61. I. Locher, G. Tröster, Screen-printed textile transmission lines. Text. Res. J. 77(11), 837–842 (2007)

    Article  Google Scholar 

  62. A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Foldable printed circuit boards on paper substrates. Adv. Func. Mater. 20(1), 28–35 (2010)

    Article  Google Scholar 

  63. A. Nag, S.C. Mukhopadhyay, J. Kosel, Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuators, A 251, 148–155 (2016)

    Article  Google Scholar 

  64. A. Nag, S.C. Mukhopadhyay, J. Kosel, Tactile sensing from laser-ablated metallized PET films. IEEE Sens. J. 17(1), 7–13 (2016)

    Article  Google Scholar 

  65. J.A. Barron, B.R. Ringeisen, H. Kim, B.J. Spargo, D.B. Chrisey, Application of laser printing to mammalian cells. Thin Solid Films 453, 383–387 (2004)

    Article  Google Scholar 

  66. A.J. Birnbaum, H. Kim, N.A. Charipar, A. Piqué, Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices. Appl. Phys. A Mater. Sci. Process. 99(4), 711–716 (2010)

    Article  Google Scholar 

  67. S.Z. Hossain et al., Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol− gel-derived bioinks. Anal. Chem. 81(13), 5474–5483 (2009)

    Article  Google Scholar 

  68. C.M. Homenick et al., Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing. ACS Appl. Mater. Interfaces 8(41), 27900–27910 (2016)

    Article  Google Scholar 

  69. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing—process and its applications. Adv. Mater. 22(6), 673–685 (2010)

    Article  Google Scholar 

  70. Inkjet printing. https://www.ikts.fraunhofer.de/en/departments/energy_bio-medical_technology/materials_and_components/HT_ElectrochemistryCatalysis/material_inks.html

  71. W. Shen, X. Zhang, Q. Huang, Q. Xu, W. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6(3), 1622–1628 (2014)

    Article  Google Scholar 

  72. S. Wang et al., Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 3(5), 2407–2413 (2015)

    Article  Google Scholar 

  73. Y. Farraj, M. Grouchko, S. Magdassi, Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics. Chem. Commun. 51(9), 1587–1590 (2015)

    Article  Google Scholar 

  74. V. Eswaraiah, K. Balasubramaniam, S. Ramaprabhu, Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J. Mater. Chem. 21(34), 12626–12628 (2011)

    Article  Google Scholar 

  75. L. Lin et al., Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy 2(1), 75–81 (2013)

    Article  Google Scholar 

  76. G. Latessa, F. Brunetti, A. Reale, G. Saggio, A. Di Carlo, Piezoresistive behaviour of flexible PEDOT: PSS based sensors. Sens. Actuators B: Chem. 139(2), 304–309 (2009)

    Article  Google Scholar 

  77. S. Takamatsu, T. Imai, T. Yamashita, T. Kobayashi, K. Miyake, T. Itoh,Flexible fabric keyboard with conductive polymer-coated fibers,in Sensors, 2011 IEEE (IEEE, 2011), pp. 659–662

    Google Scholar 

  78. N. Chen, J. Engel, S. Pandya, C. Liu,Flexible skin with two-axis bending capability made using weaving-by-lithography fabrication method,in MEMS 2006 Istanbul. 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006 (IEEE, 2006), pp. 330–333

    Google Scholar 

  79. J.B. Lee, V. Subramanian, Weave patterned organic transistors on fiber for E-textiles. IEEE Trans. Electron Devices 52(2), 269–275 (2005)

    Article  Google Scholar 

  80. K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, G. Tröster, Woven electronic fibers with sensing and display functions for smart textiles. Adv. Mater. 22(45), 5178–5182 (2010)

    Article  Google Scholar 

  81. Weavers Turn Silk Into Diabetes Test Strips. https://www.npr.org/sections/goatsandsoda/2015/01/08/375442225/weavers-turn-silk-into-diabetes-test-strips

  82. U. Briedis, A. Valisevskis, M. Grecka, Development of a smart garment prototype with enuresis alarm using an embroidery-machine-based technique for the integration of electronic components. Procedia Comput. Sci. 104, 369–374 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Eshrat E. Alahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alahi, M.E.E. et al. (2021). Recent Advancement of Interdigital Sensor for Nitrate Monitoring in Water. In: Mukhopadhyay, S.C., George, B., Roy, J.K., Islam, T. (eds) Interdigital Sensors. Smart Sensors, Measurement and Instrumentation, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-62684-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62684-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62683-9

  • Online ISBN: 978-3-030-62684-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics