Skip to main content

Value of Nutrition-Based Therapies for Hair Growth, Color, and Quality

  • Chapter
  • First Online:
Nutrition for Healthy Hair
  • 1078 Accesses

Abstract

Since an important commercial interest lies in the nutritional value of various vitamin and amino acid supplements, an important question that arises is whether increasing the content of an already adequate diet with specific amino acids, vitamins, and/or trace elements may further promote hair growth and pigmentation. Pharmacy aisles and Internet drugstores are full of nutritional supplements promising full, thick, luscious hair for prices that range from suspiciously cheap to dishearteningly exorbitant. It would appear that unless hair loss is due to a specific nutritional deficiency, there is only so much that nutritional therapies can do to enhance hair growth and quality. However, there are internal and external factors, such as aging and environmental stressors, that influence hair health to such a degree that nutritional therapy may boost hair that is suffering from these problems. Protein is the main component of hair with the primary component of the hair fiber being keratin that is made from amino acids. The most abundant of these is cysteine which gives the hair fiber much of its strength through the linking of the sulfur in cysteine molecules of adjacent keratin proteins together in disulfide bonds. Meanwhile, the hair follicle exhibits a high rate of metabolism. As a group, B complex vitamins are important for metabolic functions and therefore required to utilize other nutrients like carbohydrates and amino acids: biotin (vitamin H), calcium pantothenate (B5), niacinamide (B3), folic acid, and vitamins B6 (pyridoxal phosphate) and B12 (cobalamin). Further insights into the role of oxidative stress could open additional strategies for interventions into age-dependent hair and pigmentation loss. Specifically, the body possesses endogenous defense mechanisms, such as antioxidative enzymes (superoxide dismutase, catalase, glutathione peroxidase) and nonenzymatic antioxidative molecules (vitamins E and C, glutathione, ubiquinone), protecting it from free radicals. With age, the production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, ultimately resulting in the aging phenotype.

Finally, there are a number of botanicals from both traditional Chinese medicine and Ayurvedic medicine with alleged antiaging effects. A number of herbal drugs including the polypharmacy type of prescription (combination of multiple herbs) are available and widely dispensed. This polypharmacy type of herbal therapy allegedly exhibits holistic effectiveness by exerting multitargeted effects. However, the effective constituents of the traditional herbal remedies have not been fully elucidated, though there exist ample opportunities to study them systematically with respect to current research trends in popular antiaging medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rautiainen S, Manson JE, Lichtenstein AH, Sesso HD. Dietary supplements and disease prevention: a global overview. Nat Rev Endocrinol. 2016;12:407–20.

    Article  CAS  PubMed  Google Scholar 

  2. Marra MV, Boyar AP. Position of the American Dietetic Association: nutrient supplementation. J Am Diet Assoc. 2009;109:2073–85.

    Article  PubMed  Google Scholar 

  3. Rinaldi F, Marzani B, Pinto D, Ramot Y. A spermidine-based nutritional supplement prolongs the anagen phase of hair follicles in humans: a randomized, placebo-controlled, double-blind study. Dermatol Pract Concept. 2017;7:17–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cherfas J. Millet: how a trendy ancient grain turned nomads into farmers. National Public Radio. The Salt; 2015. Accessed 4 May 2018.

    Google Scholar 

  5. Keophiphath M, Courbière C, Manzato L, Lamour I, Gaillard E. Miliacin encapsulated by polar lipids stimulates cell proliferation in hair bulb and improves telogen effluvium in women. J Cosmet Dermatol. 2020;19:485–93.

    Article  PubMed  Google Scholar 

  6. Weber G, Adamczyk A, Freytag S. Treatment of acne with a yeast preparation [Article in German]. Fortschr Med. 1989;107:563–6.

    CAS  PubMed  Google Scholar 

  7. Oesser S, Adam M, Babel W, Seifert J. Oral administration of 14C labelled gelatine hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). J Nutr. 1999;129:1891–5.

    Article  CAS  PubMed  Google Scholar 

  8. Iwai K, Hasegawa T, Taguchi Y, Morimatsu F, Sato K, Nakamura Y, Higashi A, Kido Y, Nakabo Y, Ohtsuki K. Identification of food-derived collagen peptides in human blood after oral ingestion of gelatine hydrolysates. J Agric Food Chem. 2005;53:6531–6.

    Article  CAS  PubMed  Google Scholar 

  9. Matsuda N, Koyama Y, Hosaka Y, Ueda H, Watanabe T, Araya T, Irie S, Takehana K. Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in the dermis. J Nutr Sci Vitaminol. 2006;52:211–5.

    Article  CAS  PubMed  Google Scholar 

  10. Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci U S A. 1978;75:871–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shigemura Y, Iwai K, Morimatsu F, Iwamoto T, Mori T, Oda C, Taira T, Park EY, Nakamura Y, Sato K. Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J Agric Food Chem. 2009;57:444–9.

    Article  CAS  PubMed  Google Scholar 

  12. Patiri C. Experience with gelatin treatment of nail growth disorders [Article in German]. Z Haut Geschlechtskr. 1971;46:523–6.

    CAS  PubMed  Google Scholar 

  13. Zohary D, Hopf M, Weiss E. Domestication of plants in the old world: the origin and spread of domesticated plants in southwest Asia, Europe, and the Mediterranean Basin. 4th ed. New York: Oxford University Press; 2012. p. 122.

    Book  Google Scholar 

  14. Betty R. The Many healing virtues of fenugreek. Spice India. 2008:17–9.

    Google Scholar 

  15. Ahmada A, Alghamdia S, Mahmood K, Afzal M. Fenugreek a multipurpose crop: potentialities and improvements. Saudi J Biol Sci. 2016;23:300–10.

    Article  Google Scholar 

  16. Curry A. A 9,000-year love affair. Natl Geogr. 2010;231:46.

    Google Scholar 

  17. Mansoori A, Hosseini S, Zilaee M, Hormoznejad R, Fathi M. Effect of fenugreek extract supplement on testosterone levels in male: a meta-analysis of clinical trials. Phytother Res. 2020;34:1550–5. [Online ahead of print].

    Article  CAS  PubMed  Google Scholar 

  18. Schulz C, Bielfeldt S, Reimann J. Fenugreek + micronutrients: efficacy of a food supplement against hair loss. Cosmetic Med. 2006;27:1430–4031.

    Google Scholar 

  19. Nguyen SM, Ko NK, Sattar AS, Ipek EG, Ali S. Pulmonary embolism secondary to testosterone-enhancing herbal supplement use. Cureus. 2017;9:e1545.

    PubMed  PubMed Central  Google Scholar 

  20. Ouzir M, El Bairi K, Amzazi S. Toxicological properties of fenugreek (Trigonella foenum graecum). Food Chem Toxicol. 2016;96:145–54.

    Article  CAS  PubMed  Google Scholar 

  21. Fenugreek. National Center for Complementary and Integrative Health; 2016. Accessed 6 Feb 2017.

    Google Scholar 

  22. Rossi A, Mari E, Scarno M, Garelli V, Maxia C, Scali E, Iorio A, Carlesimo M. Comparitive effectiveness of finasteride vs Serenoa repens in male androgenetic alopecia: a two-year study. Int J Immunopathol Pharmacol. 2012;25:1167–73.

    Article  CAS  PubMed  Google Scholar 

  23. Saw Palmetto. Natural standard: the authority on integrative medicine. Natural Standard Accessed 29 Oct 2014

    Google Scholar 

  24. Cheema P, El-Mefty O, Jazieh AR. Intraoperative haemorrhage associated with the use of extract of Saw Palmetto herb: a case report and review of literature. J Intern Med. 2001;250:167–9.

    Article  CAS  PubMed  Google Scholar 

  25. Leach MJ, Moore V. Black cohosh (Cimicifuga spp.) for menopausal symptoms. Cochrane Database Syst Rev. 2012;9:CD007244.

    Google Scholar 

  26. Viereck V, Emons G, Wuttke W. Black cohosh: just another phytoestrogen? Trends Endocrinol Metab. 2005;16:214–21.

    Article  CAS  PubMed  Google Scholar 

  27. Nuntanakorn P, Jiang B, Yang H, Cervantes-Cervantes M, Kronenberg F, Kennelly EJ. Analysis of polyphenolic compounds and radical scavenging activity of four American Actaea species. Phytochem Anal. 2007;18:219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henneicke-von Zepelin HH. 60 years of Cimicifuga racemosa medicinal products: clinical research milestones, current study findings and current development. Wien Med Wochenschr. 2017;167:147–59.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mirkin G. Estrogen in yams. JAMA. 1991;265:912.

    Article  CAS  PubMed  Google Scholar 

  30. Tada Y, Kanda N, Haratake A, Tobiishi M, Uchiwa H, Watanabe S. Novel effects of diosgenin on skin aging. Steroids. 2009;74:504–11.

    Article  CAS  PubMed  Google Scholar 

  31. Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer. 2006;54:184–201.

    Article  CAS  PubMed  Google Scholar 

  32. Soy Isoflavones. Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis; 2016. Accessed 23 May 2016.

    Google Scholar 

  33. Huang ZR, Hung CF, Lin YK, Fang JY. In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. Int J Pharm. 2008;364:36–44.

    Article  CAS  PubMed  Google Scholar 

  34. Lai CH, Chu NF, Chang CW, Wang SL, Yang HC, Chu CM, Chang CT, Lin MH, Chien WC, Su SL, Chou YC, Chen KH, Wang WM, Liou SH. Androgenic alopecia is associated with less dietary soy, lower [corrected] blood vanadium and rs1160312 1 polymorphism in Taiwanese communities. PLoS One. 2013;8:e79789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Draelos Z, Blair R, Tabor A. Oral soy supplementation and dermatology. Cosmet Dermatol. 2007;20:202–4.

    Google Scholar 

  36. Rüfer CE, Kulling SE. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem. 2006;54:2926–31.

    Article  PubMed  CAS  Google Scholar 

  37. Trompezinski S, Denis A, Schmitt D, Viac J. Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha. Arch Dermatol Res. 2003;295:112–6.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Lu Y, Lebwohl M, Wei H. PUVA (8-methoxy-psoralen plus ultraviolet A) induces the formation of 8-hydroxy-2′-deoxyguanosine and DNA fragmentation in calf thymus DNA and human epidermoid carcinoma cells. Free Radic Biol Med. 1999;27:127–33.

    Article  CAS  PubMed  Google Scholar 

  39. Kähäri VM, Saarialho-Kere U. Matrix metalloproteinases in skin. Exp Dermatol. 1997;6:199–213.

    Article  PubMed  Google Scholar 

  40. Südel KM, Venzke K, Mielke H, Breitenbach U, Mundt C, Jaspers S, Koop U, Sauermann K, Knussman-Hartig E, Moll I, Gercken G, Young AR, Stäb F, Wenck H, Gallinat S. Novel aspects of intrinsic and extrinsic aging of human skin: beneficial effects of soy extract. Photochem Photobiol. 2005;81:581–7.

    Article  PubMed  Google Scholar 

  41. Di Cerbo A, Laurino C, Palmieri B, Iannitti T. A dietary supplement improves facial photoaging and skin sebum, hydration and tonicity modulating serum fibronectin, neutrophil elastase 2, hyaluronic acid and carbonylated proteins. J Photochem Photobiol B. 2015;144:94–103.

    Article  PubMed  CAS  Google Scholar 

  42. Hornfeldt CS, Holland M, Bucay VW, Roberts WE, Waldorf HA, Dayan SH. The safety and efficacy of a sustainable marine extract for the treatment of thinning hair: a summary of new clinical research and results from a panel discussion on the problem of thinning hair and current treatments. J Drugs Dermatol. 2015;14:s15–22.

    CAS  PubMed  Google Scholar 

  43. Akhondzadeh S. Avicenna and evidence based medicine. Avicenna J Med Biotechnol. 2014;6:1–2.

    PubMed  PubMed Central  Google Scholar 

  44. Feinstein AR. Clinical judgement. Philadelphia: Williams & Wilkins; 1967.

    Google Scholar 

  45. Cochrane AL. Effectiveness and efficiency: random reflections on health services. London: Nuffield Provincial Hospitals Trust; 1972.

    Google Scholar 

  46. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312:71–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blumeyer A, Tosti A, Messenger A, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men. J Dtsch Dermatol Ges. 2011;9(Suppl. 6):S1–S57.

    Article  PubMed  Google Scholar 

  48. Kanti V, Messenger A, Dobos G, Reygagne P, Finner A, Blumeyer A, Trakatelli M, Tosti A, Del Marmol V, Piraccini BM, Nast A, Blume-Peytavi U. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men—short version. J Eur Acad Dermatol Venereol. 2018;32:11–22.

    Article  CAS  PubMed  Google Scholar 

  49. Van Weel C, Schellevis FG. Comorbidity and guidelines: conflicting interests. Lancet. 2006;367:550–1.

    Article  PubMed  Google Scholar 

  50. Mangin D, Heath I, Jamoulle M. Beyond diagnosis: rising to the multimorbidity challenge. BMJ. 2012;344:e3526.

    Article  PubMed  Google Scholar 

  51. Jakovljević M, Ostojić L. Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatr Danub. 2013;25(Suppl 1):18–28.

    PubMed  Google Scholar 

  52. Rajput RJ. Controversy: is there a role for adjuvants in the management of male pattern hair loss? J Cutan Aesthet Surg. 2010;3:82–6.

    PubMed  PubMed Central  Google Scholar 

  53. Gillespie JM, Reis PJ. Dietary regulated biosynthesis of high-sulfur wool proteins. Biochem J. 1966;98:669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reis PJ, Tunks DA, Sharry LF. Plasma amino acid patterns in sheep receiving abomasal infusions of methionine and cystine. Aust J Biol Sci. 1973;26:635–44.

    Article  CAS  PubMed  Google Scholar 

  55. Petri H, Perchalla P, Tronnier H. Die Wirksamkeit einer medikamentösen Therapie bei Haarstrukturschäden und diffusen Effluvien—vergleichende Doppelblindstudie. Schweiz Rundsch Med Prax. 1990;79:1457–62.

    CAS  PubMed  Google Scholar 

  56. Budde J, Tronnier H, Rahlfs VW, Frei-Kleiner S. Systemische Therapie von diffusem Effluvium und Haarstrukturschäden. Hautarzt. 1993;44:380–4.

    CAS  PubMed  Google Scholar 

  57. Lengg N, Heidecker B, Seifert B, Trüeb RM. Dietary supplement increases anagen hair rate in women with telogen effluvium: results of a double-blind placebo-controlled trial. Therapy. 2007;4:59–6.

    Article  CAS  Google Scholar 

  58. Hoffmann R. TrichoScan, a GCP-validated tool to measure hair growth. J Eur Acad Dermatol Venereol. 2008;22(1):132–4.

    Article  CAS  PubMed  Google Scholar 

  59. Gehring W, Gloor M. Das Phototrichogramm als Verfahren zur Beurteilung haarwachstumfördernder Präparate am Beispiel einer Kombination von Hirsefruchtextrakt, L-Cystin und Calciumpanthotenat. Zeitschrift für Hautkrankheiten H+G. 2000;7(/8):419–23.

    Google Scholar 

  60. Hertel H, Gollnick H, Matthies C, Baumann I, Orfanos CE. [Low dosage retinol and L-cystine combination improve alopecia of the diffuse type following long-term oral administration]. [Article in German]. Hautarzt. 1989;40:490–5.

    CAS  PubMed  Google Scholar 

  61. Buhl AE, Waldon DJ, Kawabe TT, Holland JM. Minoxidil stimulates mouse vibrissae follicles in organ culture. J Invest Dermatol. 1989;92:315–20.

    Article  CAS  PubMed  Google Scholar 

  62. D’Agostini F, Fiallo P, Pennisi TM, De Flora S. Chemoprevention of smoke-induced alopecia in mice by oral administration of L-cystine and vitamin B6. J Dermatol Sci. 2007;46:189–98.

    Article  PubMed  CAS  Google Scholar 

  63. Upton JH, Hannen RF, Bahta AW, Farjo N, Farjo B, Philpott MP. Oxidative stress-associated senescence in dermal papilla cells of men with androgenetic alopecia. J Invest Dermatol. 2015;135:1244–52.

    Article  CAS  PubMed  Google Scholar 

  64. Thas JJ. Siddha medicine—background and principles and the application for skin diseases. Clin Dermatol. 2008;26:62–78.

    Article  PubMed  Google Scholar 

  65. [No authors listed] Hard to swallow. Nature 2007;448: 105–106.

    Google Scholar 

  66. Shang A, Huwiler K, Nartey L, Jüni P, Egge M. Placebo-controlled trials of Chinese herbal medicine and conventional medicine comparative study. Int J Epidemiol. 2007;36:1086–92.

    Article  PubMed  Google Scholar 

  67. Oerter Klein K, Janfaza M, Wong JA, Chang RJ. Estrogen bioactivity in Fo-Ti and other herbs used for their estrogen-like effects as determined by a recombinant cell bioassay. J Clin Endocrinol Metabol. 2003;88:4077–9.

    Article  CAS  Google Scholar 

  68. Chen L, Duan H, Xie F, Gao Z, Wu X, Chen F, Wu W. Tetrahydroxystilbene glucoside effectively prevents apoptosis induced hair loss. Biomed Res Int. 2018;2:1380146.

    Google Scholar 

  69. Sextius P, Betts R, Benkhalifa I, Commo S, Eilstein J, Massironi M, Wang P, Michelet JF, Qiu J, Tan X, Jeulin S. Polygonum multiflorum Radix extract protects human foreskin melanocytes from oxidative stress in vitro and potentiates hair follicle pigmentation ex vivo. Int J Cosmet Sci. 2017;39:419–25.

    Article  CAS  PubMed  Google Scholar 

  70. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.

    Article  CAS  PubMed  Google Scholar 

  71. Russell L, Hicks GS, Low AK, Shepherd JM, Brown CA. Phytoestrogens: a viable option? Am J Med Sci. 2002;324:185–8.

    Article  PubMed  Google Scholar 

  72. Asian ginseng. National Center for Complementary and Integrative Health, US National Institutes of Health, Bethesda, MD; September 2016. Accessed 10 Feb 2017.

    Google Scholar 

  73. Mahady GB, Fong HS, Farnsworth NR. Botanical dietary supplements. Boca Raton: CRC Press; 2001. p. 207–15.

    Google Scholar 

  74. Fulder S. The book of ginseng. 2nd ed. Rochester, VT: Healing Arts Press; 1993. p. 300.

    Google Scholar 

  75. Wang H, Peng D, Xie J. Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin Med. 2009;4(20):20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lü JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol. 2009;7:293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, Kim HJ, Kwon SH, Jang CG, Lee JH, Kim HC, Nah SY. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer’s disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheimers Dis. 2012;31:207–23.

    Article  CAS  PubMed  Google Scholar 

  78. Moon J, Choi SH, Shim JY, Park HJ, Oh MJ, Kim M, Nah SY. Gintonin administration is safe and potentially beneficial in cognitively impaired elderly. Alzheimer Dis Assoc Disord. 2017;32:85–7.

    Article  CAS  Google Scholar 

  79. Kim HJ, Shin EJ, Lee BH, Choi SH, Jung SW, Cho IH, Hwang SH, Kim JY, Han JS, Chung C, Jang CG, Rhim H, Kim HC, Nah SY. Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-β protein, and mouse model of Alzheimer’s disease. Mol Cells. 2015;38:796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim HJ, Kim DJ, Shin EJ, Lee BH, Choi SH, Hwang SH, Rhim H, Cho IH, Kim HC, Nah SY. Effects of gintonin-enriched fraction on hippocampal cell proliferation in wild-type mice and an APPswe/PSEN-1 double Tg mouse model of Alzheimer’s disease. Neurochem Int. 2016;101:56–65.

    Article  CAS  PubMed  Google Scholar 

  81. Kim HJ, Park SD, Lee RM, Lee BH, Choi SH, Hwang SH, Rhim H, Kim HC, Nah SY. Gintonin attenuates depressive-like behaviors associated with alcohol withdrawal in mice. J Affect Disord. 2017;215:23–9.

    Article  PubMed  CAS  Google Scholar 

  82. Park GH, Park KY, Cho HI, Lee SM, Han JS, Won CH, Chang SE, Lee MW, Choi JH, Moon KC, et al. Red ginseng extract promotes the hair growth in cultured human hair follicles. J Med Food. 2015;18:354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Choi BY. Hair-growth potential of ginseng and its major metabolites: a review on its molecular mechanisms. Int J Mol Sci. 2018;19(9):pii:E2703.

    Article  CAS  Google Scholar 

  84. Oh GN, Son SW. Efficacy of Korean red ginseng in the treatment of alopecia areata. J Ginseng Res. 2012;36:391–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kim JH, Yi SM, Choi JE, Son SW. Study of the efficacy of Korean red ginseng in the treatment of androgenic alopecia. J Ginseng Res. 2009;33:223–8.

    Article  Google Scholar 

  86. Ryu HJ, Yoo MG, Son SW. The efficacy of 3% minoxidil vs. combined 3% minoxidil and Korean red ginseng in treating female pattern alopecia. Int J Dermatol. 2014;53:e340–2.

    Article  CAS  PubMed  Google Scholar 

  87. Keum DI, Pi LQ, Hwang ST, Lee WS. Protective effect of korean red ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model. J Ginseng Res. 2016;40:169–75.

    Article  PubMed  Google Scholar 

  88. Lee NE, Park SD, Hwang H, Choi SH, Lee RM, Nam SM, Choi JH, Rhim H, Cho IH, Kim HC, Hwang SH, Nah SY. Effects of a gintonin-enriched fraction on hair growth: an in vitro and in vivo study. J Ginseng Res. 2020;44:168–77.

    Article  PubMed  Google Scholar 

  89. Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and their bioactive phytochemicals for women’s health. Pharmacol Rev. 2016;68:1026–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mazaro-Costa R, Andersen ML, Hachul H, Tufik S. Medicinal plants as alternative treatments for female sexual dysfunction: utopian vision or possible treatment in climacteric women? J Sex Med. 2010;7:3695–714.

    Article  PubMed  Google Scholar 

  91. Chen XP, Li W, Xiao XF, Zhang LL, Liu CX. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med. 2013;11:577–87.

    Article  CAS  PubMed  Google Scholar 

  92. Kim MH, Choi YY, Cho IH, Hong J, Kim SH, Yang WM. Angelica sinensis induces hair regrowth via the inhibition of apoptosis signaling. Am J Chin Med. 2014;42:1021–34.

    Article  PubMed  Google Scholar 

  93. Lin Z. Ganoderma (Lingzhi) in traditional Chinese medicine and Chinese culture. Adv Exp Med Biol. 2019;1181:1–13.

    Article  CAS  PubMed  Google Scholar 

  94. The Divine Farmer’s Materia Medica. A translation of the Shen Nong Ben Cao Jing. Translated by Yang. Shouzhong: Blue Poppy Enterprises; 1998. p. 17–8.

    Google Scholar 

  95. Stuart GA, Smith FP. Chinese Materia Medica, Pt. 1, vegetable kingdom, vol. 274: Presbyterian Mission Press; 1911. p. 271.

    Google Scholar 

  96. Paterson R, Russell M. Ganoderma—a therapeutic fungal biofactory. Phytochemistry. 2006;67:1985–2001.

    Article  CAS  PubMed  Google Scholar 

  97. Hunt K. Some trees can live for more than 1,000 years and scientists may have figured out why. CNN; 2020. Accessed 19 Jan 2020.

    Google Scholar 

  98. Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W. Draft genome of the living fossil Ginkgo biloba. GigaScience. 2016;5:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. van Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A. 2009;1216:2002–32.

    Article  PubMed  CAS  Google Scholar 

  100. dos Santos-Neto LL, de Vilhena T, Maria A, Medeiros-Souza P, de Souza GA. The use of herbal medicine in Alzheimer’s disease—a systematic review. Evid Based Complement Alternat Med. 2006;3:441–5.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Committee on Herbal Medicinal Products. Assessment report on Ginkgo biloba L., folium (PDF). European Medicines Agency.

    Google Scholar 

  102. Kobayashi N, Suzuki R, Koide C, Suzuki T, Matsuda H, Kubo M. Effect of leaves of Ginkgo biloba on hair regrowth in C3H strain mice [Article in Japanese]. Yakugaku Zasshi. 1993;113:718–24.

    Article  CAS  PubMed  Google Scholar 

  103. Hou IC, Amarnani S, Chong MT, Bishayee A. Green tea and the risk of gastric cancer: epidemiological evidence. World J Gastroenterol. 2013;19:3713–22.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Caini S, Cattaruzza MS, Bendinelli B, Tosti G, Masala G, Gnagnarella P, Assedi M, Stanganelli I, Palli D, Gandini S. Coffee, tea and caffeine intake and the risk of non-melanoma skin cancer: a review of the literature and meta-analysis. Eur J Nutr. 2017;56:1–12.

    Article  CAS  PubMed  Google Scholar 

  105. Tang J, Zheng JS, Fang L, Jin Y, Cai W, Li D. Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr. 2015;114:673–83.

    Article  CAS  PubMed  Google Scholar 

  106. Jurgens TM, Whelan AM, Killian L, Doucette S, Kirk S, Foy E. Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst Rev. 2012:CD008650. https://doi.org/10.1002/14651858.CD008650.pub2.

  107. Mahmood T, Akhtar N. Moldovan C. A comparison of the effects of topical green tea and lotus on facial sebum control in healthy humans. Hippokratia. 2013;17:64–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Majewska K, Older D, Pawełczyk A, Zaprutko T, Żwawiak J, Zaprutko L. Aktywne kosmetyki wśród produktów spożywczych. Homines Hominibus. 2010;6:65–96.

    Google Scholar 

  109. Koch W, Zagórska J, Marzec Z, Kukula-Koch W. Applications of tea (Camellia sinensis) and its active constituents in cosmetics. Molecules. 2019;24:4277.

    Article  CAS  PubMed Central  Google Scholar 

  110. Fischer TW, Hipler UC, Elsner P. Effect of caffeine and testosterone on the proliferation of human hair follicles in vitro. Int J Dermatol. 2007;46:27–35.

    Article  PubMed  Google Scholar 

  111. Kwon OS, Han JH, Yoo HG, Chung JH, Cho KH, Eun HC, Kim KH. Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine. 2007;14:551–5.

    Article  CAS  PubMed  Google Scholar 

  112. Kim SH, Kim SR, Lee HJ, Oh H, Ryu SY, Lee YS, Kim TH, Jo SK. Apoptosis in growing hair follicles following gamma-irradiation and application for the evaluation of radioprotective agents. In Vivo. 2003;17:211–4.

    CAS  PubMed  Google Scholar 

  113. Nualsri C, Lourith N, Kanlayavattanakul M. Development and clinical evaluation of green tea hair tonic for greasy scalp treatment. J Cosmet Sci. 2016;67:161–6.

    PubMed  Google Scholar 

  114. Zhang B, Zhang RW, Yin XQ, Lao ZZ, Zhang Z, Wu QG, Yu LW, Lai XP, Wan YH, Li G. Inhibitory activities of some traditional Chinese herbs against testosterone 5α-reductase and effects of Cacumen platycladi on hair re-growth in testosterone-treated mice. J Ethnopharmacol. 2016;177:1–9.

    Article  PubMed  CAS  Google Scholar 

  115. Narayanaswamy V. Origin and developments of Ayurveda (a brief history). Ancient Sci Life. 1981;1:1–7.

    CAS  Google Scholar 

  116. Dymock W, et al. Pharmacographia Indica, A history of principal drugs of vegetable origin in British India, vol. 1: K. Paul, Trench, Trübner & Company, London; 1890.

    Google Scholar 

  117. Dev S. Ancient-modern concordance in ayurvedic plants: some examples. Environ Health Perspect. 1999;107:783–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Research in Ayurveda—About CCRAS. Central Council for Research in Ayurveda and Siddha. Department Of AYUSH, Ministry of Health and Family Welfare. Archived from the original on 30 May 2014.

    Google Scholar 

  119. Trüeb RM. From hair in India to hair India. Int J Trichology. 2017;9:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pandit S, Chauhan NS, Dixit VK. Effect of Cuscuta reflexa Roxb on androgen-induced alopecia. J Cosmet Dermatol. 2008;7:199–204.

    Article  PubMed  Google Scholar 

  121. Roy RK, Thakur M, Dixit VK. Hair growth promoting activity of Eclipta alba in male albino rats. Arch Dermatol Res. 2008;300:357–64.

    Article  CAS  PubMed  Google Scholar 

  122. Datta K, Singh AT, Mukherjee A, Bhat B, Ramesh B, Burman AC. Eclipta alba extract with potential for hair growth promoting activity. J Ethnopharmacol. 2009;124:450–6.

    Article  PubMed  Google Scholar 

  123. Roy RK, Thakur M, Dixit VK. Development and evaluation of polyherbal formulation for hair growth-promoting activity. J Cosmet Dermatol. 2007;6:108–12.

    Article  PubMed  Google Scholar 

  124. Mukherjee PK, Harwansh RK, Bahadur S, Banerjee S, Kar A, Chanda J, Biswas S, Ahmmed SM, Katiyar CK. Development of ayurveda—tradition to trend. J Ethnopharmacol. 2017;197:10–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph M. Trüeb .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trüeb, R.M. (2020). Value of Nutrition-Based Therapies for Hair Growth, Color, and Quality. In: Nutrition for Healthy Hair. Springer, Cham. https://doi.org/10.1007/978-3-030-59920-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59920-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59919-5

  • Online ISBN: 978-3-030-59920-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics