Skip to main content

Soil Microorganisms and Quality of the Coffee Beverage

  • Chapter
  • First Online:
Quality Determinants In Coffee Production

Abstract

The food production must grow 70% until 2050 to solve the world food demand which is growing fast, reaching the number of 7.7 bilious people in 2019 (FAO 2009). In order to fit this reality, the agricultural sector requires technological innovations to increase productivity, income distribution and to reduce the environmental impact of important monocultures, for instance, the crop coffee. In addition to increasing the production using social and environmental low-cost, is also important that production be cheap and healthy. In this context, one way of innovations in this sector is taking into account the biological component, since it is closely interrelated with physical and chemical components. These three components together will influence the productivity and sustainability of agricultural systems. The focus should not be only in increasing production and productivity, but recognize the role of technological activity aiming to produce better and favoring the quality the health, sovereignty and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar, M. S., & Siddiqui, Z. A. (2008). Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In Mycorrhizae: Sustainable agriculture and forestry (pp. 61–97). Netherlands: Springer. https://doi.org/10.1007/978-1-4020-8770-7_3

    Chapter  Google Scholar 

  • Akiyama, K., Matsuoka, H., & Hayashi, H. (2002). Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Molecular Plant-Microbe Interactions MPMI, 15, 334–340.

    Article  CAS  PubMed  Google Scholar 

  • Akond, M. A., Mubassara, S., Rahman, M. M., Alam, S., & Khan, Z. U. M. (2008). Status of vesicular-arbuscular (VA) mycorrhizae in vegetable crop plants of Bangladesh. World Journal of Agricultural Sciences, 7, 704–708.

    Google Scholar 

  • Allen, M. F. (1996). The ecology of arbuscular mycorrhizas: A look back into the 20th century and a peek into the 21st. Mycological Research, 100, 769–782. https://doi.org/10.1016/S0953-7562(96)80021-9

    Article  Google Scholar 

  • Alves, E. P., da Silva, M. L., de Oliveira Neto, S. N., Barrella, T. P., & Santos, R. H. S. (2015). Análise econômica de um sistema com cafeeiros e bananeiras em agricultura familiar na Zona da Mata, Brasil. Ciencia e Agrotecnologia, 39, 232–239. https://doi.org/10.1590/S1413-70542015000300004

    Article  Google Scholar 

  • Andrade, S. A. L., Mazzafera, P., Schiavinato, M. A., & Silveira, A. P. D. (2009). Arbuscular mycorrhizal association in coffee. Journal of Agricultural Science, 147, 105–115. https://doi.org/10.1017/S0021859608008344

    Article  Google Scholar 

  • Andrade, S. A. L., Silveira, A. P. D., & Mazzafera, P. (2010). Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Science of the Total Environment, 408, 5381–5391. https://doi.org/10.1016/j.scitotenv.2010.07.064

    Article  CAS  PubMed  Google Scholar 

  • Arias, R. M., Heredia-Abarca, G., Sosa, V. J., & Fuentes-Ramírez, L. E. (2012). Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agroforestry Systems, 85, 179–193. https://doi.org/10.1007/s10457-011-9414-3

    Article  Google Scholar 

  • Arriagada, C., Aranda, E., Sampedro, I., Garcia-Romera, I., & Ocampo, J. A. (2009). Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Chemosphere, 77, 273–278. https://doi.org/10.1016/j.chemosphere.2009.07.042

    Article  CAS  PubMed  Google Scholar 

  • Avelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B., & Cilas, C. (2005). Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and Agriculture, 85, 1869–1876. https://doi.org/10.1002/jsfa.2188

    Article  CAS  Google Scholar 

  • Bagyaraj, D. J., Thilagar, G., Ravisha, C., Kushalappa, C. G., Krishnamurthy, K. N., & Vaast, P. (2015). Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agriculture, Ecosystems and Environment, 202, 198–202. https://doi.org/10.1016/j.agee.2015.01.015

    Article  Google Scholar 

  • Baldani, J. I., Caruso, L., Baldani, V. L. D., Goi, S. R., & Dobereiner, J. (1997). Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, 29, 911–922. https://doi.org/10.1016/S0038-0717(96)00218-0

    Article  CAS  Google Scholar 

  • Balota, E. L., & Lopes, E. S. (1996). Introdução de fungo micorrizico arbuscular no cafeeiro em condições de campo: persistência e interação com espécies nativas. Revista Brasileira de Ciência do Solo, 20, 217–223.

    Google Scholar 

  • Barbosa, M. V., Pedroso, D. D. F., Curi, N., & Carneiro, M. A. C. (2019). Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Diferentes fungos micorrízicos arbusculares afetam a formação e estabilidade de agregados do solo? Agricultural Sciences, 43, 9. https://doi.org/10.1590/1413-7054201943003519

    Article  CAS  Google Scholar 

  • Barra-Bucarei, L., France Iglesias, A., Gerding González, M., Silva Aguayo, G., Carrasco-Fernández, J., Castro, J. F., & Ortiz Campos, J. (2019). Antifungal Activity of Beauveria bassiana Endophyte against Botrytis cinerea in two solanaceae crops. Microorganisms, 8, 65. https://doi.org/10.3390/microorganisms8010065

    Article  CAS  PubMed Central  Google Scholar 

  • Berbara, R. L. L., Souza, F. A., & Fonseca, H. M. A. C. (2006). III - Fungos micorrízicos arbusculares: muito além da nutrição. MG: Viçosa.

    Google Scholar 

  • Bernaola, L., Cange, G., Way, M. O., Gore, J., Hardke, J., & Stout, M. (2018). Natural Colonization of Rice by Arbuscular Mycorrhizal Fungi in Different Production Areas. Rice Science, 25, 169–174. https://doi.org/10.1016/j.rsci.2018.02.006

    Article  Google Scholar 

  • Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135, 2575–2583. https://doi.org/10.1016/j.foodchem.2012.06.060

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S., & Bagyaraj, D. J. (2002). Effectiveness of Arbuscular Mycorrhizal Fungal Isolates on Arabica Coffee ( Coffea arabica L.). Biological Agriculture & Horticulture, 20, 125–131. https://doi.org/10.1080/01448765.2002.9754956

    Article  Google Scholar 

  • Bonfante, P., & Anca, I.-A. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63, 363–383. https://doi.org/10.1146/annurev.micro.091208.073504

    Article  CAS  PubMed  Google Scholar 

  • Bonfante, P., & Genre, A. (2010). Mechanisms underlying benefi cial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 1, 1–11. https://doi.org/10.1038/ncomms1046

    Article  CAS  Google Scholar 

  • Bonfim, J. A., Matsumoto, S. N., Lima, J. M., César, F. R. C. F., & Santos, M. A. F. (2010). Fungos micorrízicos arbusculares e aspectos fisiológicos em cafeeiros cultivados em sistema agroflorestal e a pleno sol. Bragantia, 69, 201–206.

    Article  Google Scholar 

  • Botrel, D. A., Laborde, M. C. F., Medeiros, F. H. V., Resende, M. L. V., Ribeiro Junior, P. M., Pascholati, S. F., & Gusmão, L. F. P. (2018). Saprobic fungi aS biocontrol agents of halo blight (Pseudomonas syringae pv. garcae) in coffee cloneS. Coffee Science, 13, 283–291.

    Article  Google Scholar 

  • Bressani, A. P. P., Martinez, S. J., Evangelista, S. R., Dias, D. R., & Schwan, R. F. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT—Food Science and Technology, 92, 212–219. https://doi.org/10.1016/j.lwt.2018.02.029

    Article  CAS  Google Scholar 

  • Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 1–8. https://doi.org/10.1111/nph.14976

  • Cacefo, V., Fernando De Araújo, F., & Pacheco, A. C. (2016). Biological control of Hemileia vastatrix Berk. & Broome with Bacillus subtilis Cohn and biochemical changes in the coffee. Coffee Science, 11, 567–574.

    Google Scholar 

  • Caldwell, A. C., Silva, L. C. F., Da Silva, C. C., & Ouverney, C. C. (2015). Prokaryotic diversity in the rhizosphere of organic, intensive, and transitional coffee farms in Brazil. PLoS One, 10. https://doi.org/10.1371/journal.pone.0106355

  • Camargo, M. B. P. (2010). The impact of climatic variability and climate change on arabica coffee crop in Brazil. Bragantia, 69, 239–247.

    Article  Google Scholar 

  • Campanella, J. J., Olajide, A. F., Magnus, V., & Ludwig-Mü, J. (2004). A Novel auxin conjugate hydrolase from wheat with substrate specificity for longer side-chain auxin amide conjugates 1. Plant Physiology, 135, 2230–2240. https://doi.org/10.1104/pp.104.043398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso, E.J.B.N., 1978. Ocorrência de micorrizas em café. Summa Phytopathologica.

    Google Scholar 

  • Cardoso, E. J. B. N., Cardoso, I. M., Nogueira, M. A., Bareta, C. R. D. M., & Paula, A. M. (2010). Micorrizas arbusculares na aquisição de nutrientes pelas plantas. In J. O. Siqueira, F. A. De Souza, E. J. B. N. Cardoso, & S. M. Tsai (Eds.), Micorrizas: 30 anos de pesquisa no Brasil. Lavras: UFLA.

    Google Scholar 

  • Cardoso, I. M., Boddington, C., Janssen, B. H., Oenema, O., & Kuyper, T. W. (2003). Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agroforestry Systems, 58, 33–43.

    Article  Google Scholar 

  • Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment, 116, 72–84. https://doi.org/10.1016/J.AGEE.2006.03.011

    Article  Google Scholar 

  • Carenho, R., Gomes-da-Costa, S. M., Balota, E. L., & Colozzi-Filho, A. (2010). Fungos micorrízicos arbusculares em agrossistemas brasileiros. In J. O. Siqueira, F. A. D. de Souza, E. J. B. N. Cardoso, & S. M. Tsai (Eds.), Micorrizas: 30 anos de pesquisa no Brasil. Lavras: UFLA.

    Google Scholar 

  • Carvalho, F. P., Souza, B. P., França, A. C., Ferreira, E. A., Franco, M. H. R., Kasuya, M. C. M., & Ferreira, F. A. (2014). Glyphosate drift affects arbuscular mycorrhizal association in coffee. Planta Daninha, 32, 783–789.

    Article  Google Scholar 

  • Castellanos-Morales, V., Villegas, J., Wendelin, S., Vierheilig, H., Eder, R., & Ul, R. C. (2010). Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × ananassa Duch.) at different nitrogen levels. Journal of the Science of Food and Agriculture, 90(11), 1774–1782. https://doi.org/10.1002/jsfa.3998

    Article  CAS  PubMed  Google Scholar 

  • Cecatto, A. P. (2014). Mycorrizal inoculation: Consequences in metabolism and interference in strawberry fruit production and quality in soilless culture in Brazil and Spain. Thesis (Doctorate in Agronomy)—University of Passo Fundo.

    Google Scholar 

  • Chalfoun, S. M. (2010). Biological control and bioactive microbial metabolites: a coffee quality perspective. Ciência e Agrotecnologia, 34, 1071–1085.

    Article  Google Scholar 

  • Chalfoun, S. M., Angélico, C. L., & Resende, M. L. V. (2018). Brazilian coffee quality: Cultural, microbiological and bioactivity aspects. World Journal of Research and Review, 6(1).

    Google Scholar 

  • Chernin, L., Ismailov, Z., Haran, S., & Chet, I. (1995). Chitinolytic enterobacter agglomerans antagonistic to fungal plant pathogens. Applied and Environmental Microbiology, 61, 1720–1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collozi-Filho, A., & Cardoso, E. J. B. N. (2000). Detecção de fungos micorrízicos arbusculares em raízes de cafeeiro e de crotalária cultivada na entrelinha. Pesquisa Agropecuária Brasileira, 35, 2033–2042. https://doi.org/10.1590/S0100-204X2000001000015

    Article  Google Scholar 

  • Collozi-Filho, A., & Nogueira, M. A. (2007). Micorrizas Arbusculares em Plantas Tropicais: Café, Mandioca e Cana-de-Açúcar. In A. P. D. Silveira & S. S. Sueli dos Santos Freitas (Eds.), Microbiota do solo e qualidade ambiental. Campinas: Instituto Agronômico.

    Google Scholar 

  • Collozi-Filho, A., Siqueira, J. O., Saggin Júnior, O. J., Guimarães, P. T. J., & Oliveira, E. (1994). Efetividade de diferentes fungos micorrízicos arbusculares na formação de mudas, crescimento e pós-transplante e produção do cafeeiro. Pesquisa Agropecuaria Brasileira, 29, 1397–1406.

    Google Scholar 

  • Colmenares, P. C. H., Paiva, A. S., & Ortiz, A. M. M. (2016). Impacts of different coffee systems on soil microbial populations at different altitudes in Villavicencio (Colombia). Agronomia Colombiana, 34, 285–291.

    Article  Google Scholar 

  • Cordero, A. F. P. (2008). Diversity of endophytic bacteria in coffee cheries. Federal University of Viçosa.

    Google Scholar 

  • Costa, E. L. (2010). Irrigation. In P. R. Reis & R. L. Cunha (Eds.), Café Arábica do plantio à colheita. Lavras: Unidade Regional EPAMIG Sul de Minas.

    Google Scholar 

  • Criquet, S., Ferre, E., Farnet, A., & Le petit, J. (2004). Annual dynamics of phosphatase activities in an evergreen oak litter: Influence of biotic and abiotic factors. Soil Biology and Biochemistry, 36, 1111–1118. https://doi.org/10.1016/J.SOILBIO.2004.02.021

    Article  CAS  Google Scholar 

  • Cruz, C., Egsgaard, H., Trujillo, C., Requena, N., Martins-Louc, M. A., & Jakobsen, I. (1983). Frey and Schü epp. Plant Physiology, 144, 782–792. https://doi.org/10.1104/pp.106.090522

    Article  CAS  Google Scholar 

  • Cwala, Y., Laubscher, C. P., Ndakidemi, P. A., & Meyer, A. H. (2010). Mycorrhizal root colonisation and the subsequent host plant response of soil less grown tomato plants in the presence and absence of the mycorrhizal stimulant, Mycotech. African Journal of Microbiology Research, 4, 414–419.

    CAS  Google Scholar 

  • Daba, G., Helsen, K., Berecha, G., Lievens, B., Debela, A., & Honnay, O. (2019). Seasonal and altitudinal differences in coffee leaf rust epidemics on coffee berry disease-resistant varieties in Southwest Ethiopia. Tropical Plant Pathology, 44, 244–250. https://doi.org/10.1007/s40858-018-0271-8

    Article  Google Scholar 

  • Dalié, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2010). Lactic acid bacteria: Potential for control of mould growth and mycotoxins: A review. Food Control, 21, 370–380. https://doi.org/10.1016/J.FOODCONT.2009.07.011

    Article  Google Scholar 

  • De Beenhouwer, M., Van Geel, M., Ceulemans, T., Muleta, D., Lievens, B., & Honnay, O. (2015). Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biology and Biochemistry, 91, 133–139. https://doi.org/10.1016/j.soilbio.2015.08.037

    Article  CAS  Google Scholar 

  • de Souza, M. L., Passamani, F. R. F., Ávila, C. L. S., Batista, L. R., Schwan, R. F., & Silva, C. F. (2017). Use of wild yeasts as a biocontrol agent against toxigenic fungi and OTA production. Acta Scientiarum—Agronomy, 39, 349–358. https://doi.org/10.4025/actasciagron.v39i3.32659

    Article  Google Scholar 

  • Decazy, F., Avelino, J., Guyot, B., Perriot, J. J., Pineda, C., & Cilas, C. (2003). Quality of different Honduran coffees in relation to several environments. Journal of Food Science, 68, 2356–2361. https://doi.org/10.1111/j.1365-2621.2003.tb05772.x

    Article  CAS  Google Scholar 

  • El-Tarabilyif, K. A., Giles, E., Hardy, S. J., Sivasithamparam, K., Hussein, A. M., & Kurtboke, D. I. (1997). The potential for the biological control of cavity-spot disease of carrots, caused by Pythium coloratum, by streptomycete and non-streptomycete actinomycetes. New Phytologist, 137, 495–507.

    Article  Google Scholar 

  • Entry, J. A., Rygiewicz, P. T., Watrud, L. S., & Donnelly, P. K. (2002). Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Advances in Environmental Research, 7, 123138.

    Article  Google Scholar 

  • Evizal, R., Dwidja Prijambada, I., Widada, J., & Widianto, D. (2012). Soil bacterial diversity and productivity of coffee-shade tree agro-ecosystems. Journal of Tropical Soils, 17, 181–187. https://doi.org/10.5400/jts.2012.17.2.181

    Article  Google Scholar 

  • FAO. (2009). How to feed the world in 2050. Roma: High level expert forum Convened at FAO Headquarters.

    Google Scholar 

  • Farha-Rehman, K. F. A., Anis S. B., & Badruddin S. M. A. (2010). Plant defenses against insect herbivory. In: Ciancio A., Mukerji K. (eds) Integrated management of arthropod pests and insect borne diseases. Integrated Management of Plant Pests and Diseases, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8606-8_8

  • Ferreira, B. S., Santana, M. V., Macedo, R. S., Silva, J. O., Carneiro, M. A. C., & Rocha, M. R. (2018). Co-occurrence patterns between plant-parasitic nematodes and arbuscular mycorrhizal fungi are driven by environmental factors. Agriculture, Ecosystems and Environment, 265, 54–61. https://doi.org/10.1016/j.agee.2018.05.020

    Article  Google Scholar 

  • França, A. C., de Freitas, A. F., dos Santos, E. A., Grazziotti, P. H., & de Andrade Júnior, V. C. (2016). Mycorrhizal fungi increase coffee plants competitiveness against Bidens pilosa interference. Pesquisa Agropecuária Tropical, 46, 132–139. https://doi.org/10.1590/1983-40632016v4639485

    Article  Google Scholar 

  • Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, 35–39. https://doi.org/10.1007/s11104-008-9833-8

    Article  CAS  Google Scholar 

  • Freitas, A. F., Moreira, S. D., Tibães, E. S. R., Leal, F. D. S., Monteiro, H. C., & França, A.C. (2015). Colonization of arbuscular mycorrhizal fungi and root growth of coffee in soils with different moisture. Anais do XXXXV congresso Brasileiro de Ciência do solo.

    Google Scholar 

  • Freitas, M. S. M., Martins, M. A., & Vieira, I. J. C. (2004). Produção e qualidade de óleos essenciais de Mentha arvensis em resposta à inoculação de fungos micorrízicos arbusculares. Pesquisa Agropecuária Brasileira, 39, 887–894. https://doi.org/10.1590/S0100-204X2004000900008

    Article  Google Scholar 

  • Gehring, C. A. (2003). Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species. Plant Ecology, 167, 127–139.

    Article  Google Scholar 

  • Geromel, C., Ferreira, P., Davrieux, F., Guyot, B., Ribeyre, F., Brígida, M., … Marraccini, P. (2008). Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiology and Biochemistry, 46(5–6), 569–579. https://doi.org/10.1016/j.plaphy.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson, V. (1996). Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. The Plant Cell, 8, 1871–1883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Granado, J., Felix, G., & Boller, T. (1995). Wei et al. 1992 and endogenous elicitors. Plant Physiology. Dixon and Lamb.

    Google Scholar 

  • Guimarães, N. F., Gallo, A. S., Fontanetti, A., Meneghin, S. P., Souza, M. D. B., Morinigo, K. P. G., & Silva, R. F. (2017). Biomassa e atividade microbiana do solo em diferentes sistemas de cultivo do cafeeiro Biomass and soil microbial activity in different systems of coffee cultivation. Revista de Ciências Agrárias, 40, 34–44. https://doi.org/10.19084/RCA16041

    Article  Google Scholar 

  • Guyot, B., Gueule, D., Manez, J. C., Perriot, J. J., Giron, J., & Villain, L. (1996). Influence de l’altitude et de l’ombrage sur la qualité des cafés arabica. lantations. Recherche, Développement, 3, 272–283.

    Google Scholar 

  • Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245, 83–93.

    Article  CAS  Google Scholar 

  • Haddad, F., Saraiva, R. M., Mizubuti, E. S. G., Romeiro, R. S., & Maffia, L. A. (2014). Isolation and selection of Hemileia Vastatrix antagonists. European Journal of Plant Pathology, 139, 763–772. https://doi.org/10.1007/s10658-014-0430-9

    Article  Google Scholar 

  • Haile, M., & Kang, W. H. (2019). The role of microbes in coffee fermentation and their impact on coffee quality. Journal of Food Quality, 6. https://doi.org/10.1155/2019/4836709

  • Helgason, T., & Fitter, A. H. (2005). The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist, 19, 96–101. https://doi.org/10.1017/S0269-915X(05)00302-2

    Article  Google Scholar 

  • Herrera-Medina, M. J., Steinkellner, S., Vierheilig, H., Ocampo Bote, J. A., & García Garrido, J. M. (2007). Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytologist, 175, 554–564. https://doi.org/10.1111/j.1469-8137.2007.02107.x

    Article  CAS  PubMed  Google Scholar 

  • Huber, D., Römheld, V., & Weinmann, M. (2012). Relationship between nutrition, plant diseases and pests. In Marschner’s mineral nutrition of higher plants (pp. 283–298). Elsevier. https://doi.org/10.1016/B978-0-12-384905-2.00010-8

  • Iamanaka, B. T., Teixeira, A. A., Teixeira, A. R. R., Copetti, M. V., Bragagnolo, N., & Taniwaki, M. H. (2014). Reprint of “The mycobiota of coffee beans and its influence on the coffee beverage”. Food Research International, 61, 33–38. https://doi.org/10.1016/J.FOODRES.2014.05.023

    Article  Google Scholar 

  • Ismail, Y., Mccormick, S., & Hijri, M. (2011). A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum. PLoS One, 6, 17990. https://doi.org/10.1371/journal.pone.0017990

    Article  CAS  Google Scholar 

  • Ismail, Y., Mccormick, S., & Hijri, M. (2013). The arbuscular mycorrhizal fungus, glomus irregulare, controls the mycotoxin production of fusarium sambucinum in the pathogenesis of potato. FEMS Microbiology Letters, 348, 46–51. https://doi.org/10.1111/1574-6968.12236

    Article  CAS  PubMed  Google Scholar 

  • Jackson, D., Skillman, J., & Vandermeer, J. (2012). Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61, 89–97. https://doi.org/10.1016/J.BIOCONTROL.2012.01.004

    Article  Google Scholar 

  • Johnson, N. C., Copeland, P. J., Crookston, R. K., & Pfleger, F. L. (1992). Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agronomy Journal, 84, 387. https://doi.org/10.2134/agronj1992.00021962008400030007x

    Article  Google Scholar 

  • Joosten, H. M. L., Goetz, J., Pittet, A., Schellenberg, M., & Bucheli, P. (2001). Production of ochratoxin A by Aspergillus carbonarius on coffee cherries. International Journal of Food Microbiology, 65, 39–44. https://doi.org/10.1016/S0168-1605(00)00506-7

    Article  CAS  PubMed  Google Scholar 

  • Karungi, J., Cherukut, S., Ijala, A. R., Tumuhairwe, J. B., Bonabana-Wabbi, J., Nuppenau, E. A., … Otte, A. (2018). Elevation and cropping system as drivers of microclimate and abundance of soil macrofauna in coffee farmlands in mountainous ecologies. Applied Soil Ecology, 132, 126–134. https://doi.org/10.1016/J.APSOIL.2018.08.003

    Article  Google Scholar 

  • Kejela, T., Thakkar, V. R., & Thakor, P. (2016). Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology, 16(1), 277. https://doi.org/10.1186/s12866-016-0897-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriachek, S. G., de Azevedo, L. C. B., Lambais, M. R., & Peres, L. E. P. (2009). Regulation of arbuscular mycorrhizae development. Revista Brasileira de Ciencia do Solo, 33, 1–16. https://doi.org/10.1590/S0100-06832009000100001

    Article  Google Scholar 

  • Knoester, M., Pieterse, C. M. J., Bol, J. F., & Van Loon, L. C. (1999). Systemic resistance in arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Molecular Plant-Microbe Interactions MPMI, 12, 720–727.

    Article  CAS  PubMed  Google Scholar 

  • Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 321, 83–115. https://doi.org/10.1007/s11104-009-0042-x

    Article  CAS  Google Scholar 

  • Laviola, B. G., Martinez, H. E. P., Salomão, L. C. C., Cruz, C. D., Mendonça, S. M., & Neto, A. P. (2007). Alocação de fotoassimilados em folhas e frutos de cafeeiro cultivado em duas altitudes. Pesquisa Agropecuária Brasileira, 42, 1521–1530. https://doi.org/10.1590/S0100-204X2007001100002

    Article  Google Scholar 

  • Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., Read, D., … Boddy, L. (2004). Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning 1. Canadian Journal of Botany, 82, 1016–1045. https://doi.org/10.1139/B04-060

    Article  Google Scholar 

  • Lee, K. E. (1994). The functional significance of biodiversity in soils. International Society of Soil Science, 15, 168–182.

    Google Scholar 

  • Leff, J. W., & Fierer, N. (2008). Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biology and Biochemistry, 40, 1629–1636. https://doi.org/10.1016/J.SOILBIO.2008.01.018

    Article  CAS  Google Scholar 

  • Leifheit, E. F., Verbruggen, E., & Rillig, M. C. (2015). Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biology and Biochemistry, 81, 323–328. https://doi.org/10.1016/J.SOILBIO.2014.12.003

    Article  CAS  Google Scholar 

  • Lemos, V. T. (2015). Ácido Cítrico Via Solo E Seus Efeitos Na Nutrição Do Cafeeiro. Thesis (Doctorate in Plant Production)—Federal University of Lavras.

    Google Scholar 

  • Lingua, G., Bona, E., Manassero, P., Marsano, F., Todeschini, V., Cantamessa, S., … Berta, G. (2013). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. International Journal of Molecular Sciences, 14, 16207–16225. https://doi.org/10.3390/ijms140816207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loper, J. E., & Henkels, M. D. (1999). Utilization of heterologous siderophores enhances levels of iron available to pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 65, 5357–5363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Q., Chen, L., Lu, M., Chen, G., & Zhang, L. (2010). Extraction and analysis of auxins in plants using dispersive liquid−liquid microextraction followed by high-performance liquid chromatography with fluorescence detection. Journal of Agricultural and Food Chemistry, 58, 2763–2770. https://doi.org/10.1021/jf903274z

    Article  CAS  PubMed  Google Scholar 

  • Maillet, F., Poinsot, V., André, O., Puech-Pagè, V., Haouy, A., Gueunier, M., … Dénarié, J. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469. https://doi.org/10.1038/nature09622

  • Matsubara, Y., Ishigaki, T., & Koshikawa, K. (2009). Changes in free amino acid concentrations in mycorrhizal strawberry plants. Scientia Horticulturae, 119, 392–396. https://doi.org/10.1016/J.SCIENTA.2008.08.025

    Article  CAS  Google Scholar 

  • Mauch-Mani, B., & Métraux, J. (1998). Salicylic acid and systemic acquired resistance to pathogen attack. Annals of Botany, 82, 535–540. https://doi.org/10.1006/ANBO.1998.0726

    Article  CAS  Google Scholar 

  • Mccormick, A. C. (2016). Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecology and Evolution, 6, 8569–8582. https://doi.org/10.1002/ece3.2567

    Article  Google Scholar 

  • Meira, L. S. (2004). Activity of oxidative stress enzymes of in micropropagated strawberry plantlets inoculated with arbuscular mycorrhizal fungi during the acclimatization.

    Google Scholar 

  • Mendes, G. O., Dias, C. S., Silva, I. R., Junior, J. I. R., Pereira, O. L., & Costa, M. D. (2013). Fungal rock phosphate solubilization using sugarcane bagasse. World Journal of Microbiology and Biotechnology, 29, 43–50. https://doi.org/10.1007/s11274-012-1156-5

    Article  CAS  PubMed  Google Scholar 

  • Mendonça, E. S., Lima, P. C., Guimarães, G. P., Moura, W. M., & Andrade, F. V. (2017). Biological nitrogen fixation by legumes and N uptake by coffee plants. Revista Brasileira de Ciência do Solo, 41, 160178. https://doi.org/10.1590/18069657rbcs20160178

    Article  Google Scholar 

  • Metwally, R. A., & Abdelhameed, R. E. (2018). Synergistic effect of arbuscular mycorrhizal fungi on growth and physiology of salt-stressed Trigonella foenum-graecum plants. Biocatalysis and Agricultural Biotechnology, 16, 538–544. https://doi.org/10.1016/j.bcab.2018.08.018

    Article  Google Scholar 

  • Miguel, P. S. B. (2011). Endophytic bacterial diversity in Coffea canephora fruits in three maturation stages. Thesis—Federal University of Viçosa.

    Google Scholar 

  • Miller, R. M., Reinhardt, D. R., & Jastrow, J. D. (1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103, 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Moe, L. A. (2013). Amino acids in the rhizosphere: From plants to microbes. American Journal of Botany, 100, 1692–1705.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, J. E., Cowden, C. C., Baas, P., Dawadi, A., Frankson, P. T., Helmick, K., … Witt, C. A. (2014). Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 10, 3–19. https://doi.org/10.1016/J.FUNECO.2014.01.005

    Article  Google Scholar 

  • Monteiro, M. C. P., Alves, N. M., de Queiroz, M. V., Pinho, D. B., Pereira, O. L., de Souza, S. M. C., & Cardoso, P. G. (2017). Antimicrobial activity of endophytic fungi from coffee plants. Bioscience Journal, 33, 381–389. https://doi.org/10.14393/BJ-v33n2-34494

    Article  Google Scholar 

  • Morandini, L. M. B. (2013). Isolation, structural determination and microbiological activity of bioactive molecules in the ectomicorrhizal fungus Scleroderma UFSMSc1. Thesis (PhD)—Federal University of Santa Maria.

    Google Scholar 

  • Moratelli, E. M., Costa, M. D., Lovato, P. E., Santos, M., & Paulilo, M. T. S. (2007). Efeito da disponibilidade de água e de luz na colonização micorrízica e no crescimento de Tabebuia avellanedae Lorentz ex Griseb. (Bignoniaceae). Revista Árvore, 31, 555–566. https://doi.org/10.1590/S0100-67622007000300021

    Article  Google Scholar 

  • Moreira, B. C., Prates Junior, P., Jordão, T. C., de Cássia Soares da Silva, M., Stürmer, S. L., Salomão, L. C. C., … Kasuya, M. C. M. (2016). Effect of inoculation of symbiotic fungi on the growth and antioxidant enzymes’ activities in the presence of Fusarium subglutinans f. sp. ananas in pineapple plantlets. Acta Physiologiae Plantarum, 38, 235. https://doi.org/10.1007/s11738-016-2247-y

    Article  Google Scholar 

  • Moreira, F. M. S., & Siqueira, J. O. (2006). Microbiologia e Bioquímica do Solo (2nd ed.). Lavras: UFLA.

    Google Scholar 

  • Moreira, S. L. S., Pires, C. V., Marcatti, G. E., Santos, R. H. S., Imbuzeiro, H. M. A., & Fernandes, R. B. A. (2018). Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agricultural and Forest Meteorology, 256–257, 379–390. https://doi.org/10.1016/J.AGRFORMET.2018.03.026

    Article  Google Scholar 

  • Muleta, D. (2007). Microbial inputs in coffee (Coffea arabica L.) production systems. Southwestern Ethiopia: Implications for promotion of biofertilizers and biocontrol agents, Uppsala.

    Google Scholar 

  • Muleta, D., Assefa, F., Börjesson, E., & Granhall, U. (2013). Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 12, 73–84. https://doi.org/10.1016/J.JSSAS.2012.07.002

    Article  Google Scholar 

  • Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83, 368–374. https://doi.org/10.1016/J.CARBPOL.2010.07.063

    Article  CAS  Google Scholar 

  • Nassimi, Z., & Taheri, P. (2017). Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Science and Technology, 27, 252–267. https://doi.org/10.1080/09583157.2016.1277690

    Article  Google Scholar 

  • Neto, D. P. C., Pereira, G. V. M., Tanobe, V. O. A., Soccol, V. T., Silva, B. J. G., Rodrigues, C., & Soccol, C. R. (2017). Yeast diversity and physicochemical characteristics associated with coffee bean fermentation from the Brazilian Cerrado Mineiro Region. Fermentation, 3, 1–11. https://doi.org/10.3390/fermentation3010011

    Article  CAS  Google Scholar 

  • Niemi, K., Vuorinen, T., Ernstsen, A., & Haggman, H. (2002). Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiology, 17, 1231–1239.

    Article  Google Scholar 

  • Nishitsuji, K., Watanabe, S., Xiao, J., Nagatomo, R., Ogawa, H., Tsunematsu, T., … Tsuneyama, K. (2018). Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome OPEN. Scientific Reports, 8, 10. https://doi.org/10.1038/s41598-018-34571-9

    Article  CAS  Google Scholar 

  • Nunes, F. V. (2004). Isolation and identification of coffee endophytic bacteria (Coffea arabica and Coffea robusta) and their biotechnological applications. Thesis—University of São Paulo (USP)—Institute of Biomedical Sciences.

    Google Scholar 

  • Nunes, L. A. P. L., Dias, L. E., Jucksch, I., Barros, N. F., Kasuya, M. C. M., & Correia, M. E. F. (2009). Impacto do monocultivo de café sobre os indicadores biológicos do solo na zona da mata mineira. Ciência Rural, 39, 2467–2474. https://doi.org/10.1590/S0103-84782009005000216

    Article  CAS  Google Scholar 

  • Nziguheba, G., Tossah, B. K., Diels, J., Franke, A. C., Aihou, K., Iwuafor, E. N. O., & Merckx, R. (2009). Assessment of nutrient deficiencies in maize in nutrient omission trials and long-term field experiments in the West African Savanna. Plant and Soil, 314, 143–157. https://doi.org/10.1007/s11104-008-9714-1

    Article  CAS  Google Scholar 

  • Oelmüller, R., Sherameti, I., Tripathi, S., & Varma, A. (2009). Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 1–17. https://doi.org/10.1007/s13199-009-0009-y

    Article  CAS  Google Scholar 

  • Okada, T., & Matsubara, Y. I. (2012). Tolerance to fusarium root rot and the changes in free amino acid contents in mycorrhizal asparagus plants. HortScience, 47, 751–754. https://doi.org/10.21273/hortsci.47.6.751

    Article  CAS  Google Scholar 

  • Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling and Behavior, 4, 701–712. https://doi.org/10.4161/psb.4.8.9047

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacovsky, R. S. (1989). Carbohydrate, protein and amino acid status of Glycine-Glomus-Bradyrhizobium symbioses. Physiologia Plantarum, 75, 346–354. https://doi.org/10.1111/j.1399-3054.1989.tb04637.x

    Article  CAS  Google Scholar 

  • Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Microbiology, 6, 763–775. https://doi.org/10.1038/nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  • Pereira, G. V. M., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Lara, J. M. R. A., Gollo, A. L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188, 60–66. https://doi.org/10.1016/J.IJFOODMICRO.2014.07.008

    Article  Google Scholar 

  • Peres, L. E. P. (2004). Secondary metabolism. Escola Superior de Agricultura Luiz de Queroiz.

    Google Scholar 

  • Perrin, R., & Plenchette, C. (1993). Effect of some fungicides applied as soil drenches on the mycorrhizal infectivity of two cultivated soils and their receptiveness to Glomus intraradices. Crop Protection, 12, 127–133. https://doi.org/10.1016/0261-2194(93)90139-A

    Article  CAS  Google Scholar 

  • Pimenta, C. J., Lima Angélico, C., & Chalfoun, S. M. (2018). Challengs in coffee quality: Cultural, chemical and microbiological aspects. Ciência e Agrotecnologia, 42, 337–349. https://doi.org/10.1590/1413-70542018424000118

    Article  CAS  Google Scholar 

  • Prates Júnior, P., Moreira, B. C., da Silva, M. C. S., Veloso, T. G. R., Stürmer, S. L., Fernandes, R. B. A., … Kasuya, M. C. M. (2019). Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS One, 14, e0209093. https://doi.org/10.1371/journal.pone.0209093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, S., Mccomb, A. J., Bell, R. W., & Davis, J. A. (2005). Response of soil microbial activity to temperature, moisture, and litter leaching on a wetland transect during seasonal refilling. Wetlands Ecology and Management, 13, 43–54.

    Article  Google Scholar 

  • Retama-Ortiz, Y., Ávila-Bello, C. H., Alarcón, A., & Ferrera-Cerrato, R. (2017). Effectiveness of native arbuscular mycorrhiza on the growth of four tree forest species from the Santa Marta Mountain, Veracruz (Mexico). Forest Systems, 26. https://doi.org/10.5424/fs/2017261-09636

  • Rezende, M. Q. (2010). Etnoecologia e controle biológico conservativo em cafeeiros sob sistemas agroflorestais. Thesis (Master in Entomology)—Federal University of Espírito Santo.

    Google Scholar 

  • Ricci, M. S. F., Aquino, A. M., Silva, E. M. R., Pereira, J. C., & Reis, V. M. (1999). Transformações biológicas e microbiológicas ocorridas no solo de um cafezal convencional em conversão para orgânico. Seropédica.

    Google Scholar 

  • Ritter, C. Y. S., Dhein, M., Barichello, E. C., Ritter, A. F. S., Mühl, F. R., & Feldmann, N. A. (2017). Systems involved in plant communication. 4o Simpósio de Agronomia e Tecnologia em Alimentos, 21, 1–135.

    Google Scholar 

  • Rivera, C. R. (2010). Abonos verdes e inoculación micorrízica de posturas de cafeto sobre suelos Fersialíticos Rojos Lixiviados. Cultivos Tropicales, 31(3).

    Google Scholar 

  • Rojas, Y. D. C. P., Arias, R. M., Ortiz, R. M., Aguilar, D. T., Heredia, G., & Yon, Y. R. (2019). Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agroforestry Systems, 93, 961–972. https://doi.org/10.1007/s10457-018-0190-1

    Article  Google Scholar 

  • Sanders, I. R., & Croll, D. (2010). Arbuscular mycorrhiza: The challenge to understand the genetics of the fungal partner. Annual Review of Genetics, 44, 271–292. https://doi.org/10.1146/annurev-genet-102108-134239

    Article  CAS  PubMed  Google Scholar 

  • Santos, T. M. A. (2008). Genetic diversity of endophytic bacteria associated with coffee cherries (Coffea arabica L.). Federal University of Viçosa.

    Google Scholar 

  • Schüßler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the glomeromycota: Phylogeny and evolution. Mycological Research, 105, 1413–1421. https://doi.org/10.1017/S0953756201005196

    Article  Google Scholar 

  • Scott, P. M., Lombaert, G. A., Pellaers, P., Bacler, S., & Lappi, J. (1992). Ergot alaloids in grain foods sold in Canada. Journal of the Association of Official Analytical Chemists International, 75, 773–779.

    CAS  Google Scholar 

  • Shaw, S., Le Cocq, K., Paszkiewicz, K., Moore, K., Winsbury, R., De Torres Zabala, M., … Grant, M. R. (2016). Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum gd12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Molecular Plant Pathology, 17, 1425–1441. https://doi.org/10.1111/mpp.12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, M. (2011). Endophytic actinomycetes: Biocontrol agents and growth promoters. In Bacteria in agrobiology: Plant growth responses (pp. 201–220). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-20332-9_10

    Chapter  Google Scholar 

  • Shiomi, H. F., Silva, H. S. A., De Melo, I. S., Nunes, F. V., & Bettiol, W. (2006). Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Scientia Agricola, 63, 32–39. https://doi.org/10.1590/s0103-90162006000100006

    Article  Google Scholar 

  • Silva, H. S. A., Tozzi, J. P. L., Terrasan, C. R. F., & Bettiol, W. (2012). Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biological Control, 63, 62–67. https://doi.org/10.1016/j.biocontrol.2012.06.005

    Article  Google Scholar 

  • Silvana, V. M., Carlos, F. J., Lucía, A. C., Natalia, A., & Marta, C. (2018). Colonization dynamics of arbuscular mycorrhizal fungi (AMF) in Ilex paraguariensis crops: Seasonality and influence of management practices. Journal of King Saud University: Science. https://doi.org/10.1016/j.jksus.2018.03.017

  • Silve, E. M. (2011). Ocorrência e diversidade de fungos micorrízicos arbusculares em um ecossistema cafeeiro submetido a diferentes métodos de controle de plantas daninhas. Thesis (Master in Environmental Sciences and Water Resources)—Federal University of Itajubá.

    Google Scholar 

  • Silveira, A. P. D. (1992). Micorrizas. Campinas: Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Siqueira, J. O., Collozi-Filho, A., & Saggin-Junior, O. J. (1994). Efeitos da infecção de plântulas de cafeeiro com quantidades crescentes de esporos de fungos endomicorrízicos Gigaspora margarita. Pesquisa Agropecuária Brasileira, 29, 875–883.

    Google Scholar 

  • Siqueira, J. O., & Colozzi-Filho, A. (1986). Vesicular-arbuscular mycorrhizae in coffee plantlets: II. Phosphorus effect in the establishment and functioning of symbiosis. Revista Brasileira de Ciência do Solo, 10, 207–211.

    CAS  Google Scholar 

  • Siqueira, J. O., Saggin-Júnior, O. J., Flores-Aylas, W. W., & Guimarães, P. T. G. (1998). Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza, 7, 293–300. https://doi.org/10.1007/s005720050195

    Article  CAS  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). London: Academic.

    Google Scholar 

  • Song, Y. Y., Zeng, R. S., Xu, J. F., Li, J., Shen, X., & Yihdego, W. G. (2010). Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One, 5, e13324. https://doi.org/10.1371/journal.pone.0013324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, A. K., Velmourougane, K., Bhattacharyya, T., Sarkar, D., Pal, D. K., Prasad, J., … Thakre, S. (2014). Impacts of agro-climates and land use systems on culturable microbial population in soils of the Indo-Gangetic Plains, India. Current Science, 107, 1464–1469.

    Google Scholar 

  • Stürmer, S. L., & Siqueira, J. O. (2011). Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza, 21, 255–267. https://doi.org/10.1007/s00572-010-0330-6

    Article  PubMed  Google Scholar 

  • Tate, R. L., & Klein, D. A. (1985). Soil reclamation processes: Microbiological analyses and applications. New York: Marcel Dekker.

    Google Scholar 

  • Tawaraya, K., Hashimoto, K., & Wagatsuma, T. (1998). Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza, 8, 67–70. https://doi.org/10.1007/s005720050214

    Article  CAS  Google Scholar 

  • Tchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A., & Oehl, F. (2008). Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza, 18, 181–195. https://doi.org/10.1007/s00572-008-0171-8

    Article  PubMed  Google Scholar 

  • Teixeira, E. M., Rocha, L. C. D., Machado, T. F., Pereira, J. M., Chohfi, F. M., & Morais, V. S. P. (2010). Ocorrência de fungos micorrízicos arbusculares, nematóides e ácaros em solos sob diferentes sistemas de cultivo cafeeiro no sul de Minas Gerais. Revista Agrogeoambiental, 2(1). https://doi.org/10.18406/2316-1817v2n12010258

  • Theodoro, V. C. A., Alvarenga, M. I. N., Guimarães, R. J., & Mourão Júnior, M. (2003). Carbono da biomassa microbiana e micorriza em solo sob mata nativa e agroecossistemas cafeeiros. Acta Scientiarum Agronomy, 25, 147–153. https://doi.org/10.4025/actasciagron.v25i1.2468

    Article  Google Scholar 

  • Tolessa, K., D’heer, J., Duchateau, L., & Boeckx, P. (2017). Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. Journal of the Science of Food and Agriculture, 97, 2849–2857. https://doi.org/10.1002/jsfa.8114

    Article  CAS  PubMed  Google Scholar 

  • Trindade, A. V., Saggin-Júnior, O. J., & Silveira, A. P. D. (2010). Micorrizas arbusculares na produção de mudas de plantas frutíferas e café. In J. O. Siqueira, F. A. de Souza, E. J. B. N. Cardoso, & S. M. Tsai (Eds.), Micorrizas: 30 anos de pesquisa no Brasil. Lavras: UFLA.

    Google Scholar 

  • Vaast, P., & Zasoski, R. J. (1992). Effects of VA-mycorrhizae and nitrogen sources on rhizosphere soil characteristics, growth and nutrient acquisition of coffee seedlings (Coffea arabica L.). Plant and Soil, 147, 31–39. https://doi.org/10.1007/BF00009368

    Article  CAS  Google Scholar 

  • Vaast, P., Zasoski, R. J., & Bledsoe, C. S. (1996). Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza, 6, 493–497. https://doi.org/10.1007/s005720050153

    Article  Google Scholar 

  • Van Der Heyde, M., Bennett, J. A., Pither, J., & Hart, M. (2017). Longterm effects of grazing on arbuscular mycorrhizal fungi. Agriculture, Ecosystems and Environment, 243, 27–33. https://doi.org/10.1016/j.agee.2017.04.003

    Article  Google Scholar 

  • Varma, A., Bakshi, M., Lou, B., Hartmann, A., & Oelmueller, R. (2012). Piriformospora indica: A novel plant growth-promoting mycorrhizal fungus. Agricultural Research. https://doi.org/10.1007/s40003-012-0019-5

  • Vaughan, M. J., Mitchell, T., & McSpadden Gardener, B. B. (2015). What’s inside that seed we brew? A new approach to mining the coffee microbiome. Applied and Environmental Microbiology, 81, 6518–6527. https://doi.org/10.1128/AEM.01933-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velmourougane, K. (2016). Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica, 2016. https://doi.org/10.1155/2016/3604026

  • Velmourougane, K. (2017). Shade trees improve soil biological and microbial diversity in coffee based system in Western Ghats of India. Proceedings of the National Academy of Sciences India Section B: Biological Sciences, 87, 489–497. https://doi.org/10.1007/s40011-015-0598-6

    Article  CAS  Google Scholar 

  • Vergara, C., Araujo, K. E. C., de Souza, S. R., Schultz, N., Jaggin Júnior, O. J., Sperandio, M. V. L., & Zilli, J. É. (2019). Plant-mycorrhizal fungi interaction and response to inoculation with different growth-promoting fungi. Pesquisa Agropecuaria Brasileira. https://doi.org/10.1590/S1678-3921.pab2019.v54.25140

  • Vilela, D. M., Pereira, G. V. M., Silva, C. F., Batista, L. R., & Schwan, R. F. (2010). Molecular ecology and polyphasic characterization of the microbiota associated with semi-dry processed coffee (Coffea arabica L.). Food Microbiology, 27, 1128–1135. https://doi.org/10.1016/j.fm.2010.07.024

    Article  CAS  PubMed  Google Scholar 

  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., … Kogel, K.-H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102, 13386–13391. https://doi.org/10.1073/pnas.0504423102

    Article  CAS  Google Scholar 

  • Wang, R., Sun, Q., & Chang, Q. (2015). Soil types effect on grape and wine composition in Helan Mountain Area of Ningxia. PLoS One, 10, e0116690. https://doi.org/10.1371/journal.pone.0116690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps, J. M. (2000). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.

    Article  Google Scholar 

  • Wright, A. L. (2009). Phosphorus sequestration in soil aggregates after long-term tillage and cropping. Soil and Tillage Research, 103, 406–411. https://doi.org/10.1016/j.still.2008.12.008

    Article  Google Scholar 

  • Wright, S. F., & Upadhyaya, A. (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 198, 97–107. https://doi.org/10.1023/A:1004347701584

    Article  CAS  Google Scholar 

  • Wu, B., Hogetsu, T., Isobe, K., & Ishii, R. (2007). Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza, 17, 495–506. https://doi.org/10.1007/s00572-007-0114-9

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y. L., Si, G. C., Wang, J., Han, C. H., & Zhang, G. X. (2015). Effects of microclimate on soil bacterial communities across two contrasting timberline ecotones in southeast Tibet. European Journal of Soil Science, 66, 1033–1043. https://doi.org/10.1111/ejss.12292

    Article  CAS  Google Scholar 

  • Zhao, Q., Xiong, W., Xing, Y., Sun, Y., Lin, X., & Dong, Y. (2018). Long-term coffee monoculture alters soil chemical properties and microbial communities. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-24537-2

  • Zuccaro, A., Basiewicz, M., Zurawska, M., Biedenkopf, D., & Kogel, K. H. (2009). Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology, 46, 543–550. https://doi.org/10.1016/j.fgb.2009.03.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prates Júnior, P., Veloso, T.G.R., de Cássia Soares da Silva, M., da Luz, J.M.R., Oliveira, S.F., Kasuya, M.C.M. (2021). Soil Microorganisms and Quality of the Coffee Beverage. In: Louzada Pereira, L., Rizzo Moreira, T. (eds) Quality Determinants In Coffee Production. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-54437-9_3

Download citation

Publish with us

Policies and ethics