Skip to main content

Cancer Nanomedicine: Special Focus on Cancer Immunotherapy

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Cancer poses a major threat to people’s health around the world, and its treatment has remained as an extremely challenging issue. Surgery, chemotherapy, and radiation therapy had been used as the first-line treatment for many years. However, due to several problems, such as lack of efficacy and different side effects and high recurrence rate and metastasis, more specific approaches are still needed. During recent decades, several therapeutic options have been suggested as the alternative medicine instead of conventional cancer treatments. Among them, cancer immunotherapy is one of the most studied strategies which holds promises for personalized cancer medicine. With the emergence of nanomedicine and its combination with the novel treatment plans, efficacy and safety have been significantly improved. Nanotechnology-based immunotherapy not only enhanced the therapeutic effects of traditional immunotherapy (e.g., enhancing the effectiveness of cancer vaccines) but also broke down some of cancer’s barrier against treatment. These nanomaterials are capable of delivering immunomodulatory agents directly to the tumor microenvironment or cancer vaccines to antigen-presenting cells. Moreover, nanoparticles have become popular tools for early diagnosis of cancer. Thanks to advancing in this technology, cancer could be diagnosed much more quickly and more efficiently than conventional methods.

Taken together, this new emerging science in medicine is changing the way we look at cancer and has opened up new opportunities for personalized cancer diagnosis and treatment. In this chapter, we attempted to cover all the recent knowledge about nanotech application in improving cancer diagnosis, treatment, and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ABCG2:

ATP-binding cassette subfamily G member 2

AIF:

Apoptosis-inducing factor

ALDH:

Aldehyde dehydrogenase

AML:

Acute myeloid leukemia

AnxA2:

Annexin A2

Ape1:

Apurinic endonuclease 1

Bcl-2:

B-Cell lymphoma-2

BCL2L14:

Bcl-2-like protein 14

BCL-XL:

B-Cell lymphoma-extra large

BSA:

Bovine serum albumin

CAFs:

Cancer-associated fibroblasts

CASP2:

Caspase-2

CD90:

Cluster of Differentiation 90

CDK6:

Cyclin-dependent kinase 6

CI:

Combination index

CMIIT:

Center for Molecular Imaging Innovation and Translation

CNTs:

Carbon nanotube

CP:

Coordination polymer

CRC:

Colorectal cancer

CSCs:

Cancer stem cells

CT:

Computed tomography

CTAB:

Cetyltrimethylammonium bromide

DAMPs:

Damage-associated molecular patterns

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

DCs:

Dendritic cells

DiMI:

Diagnostics in Molecular Imaging

DWI-MRI:

Diffusion-weighted imaging–magnetic resonance imaging

EMIL:

European Molecular Imaging Laboratories

EP:

Ependymoma

EpCAM:

Epithelial cell adhesion molecule

EPNs:

Enoxaparin sodium–PLGA hybrid nanoparticles

EPR:

Enhanced permeability and retention

Fe-bLf:

Iron-saturated bovine lactoferrin

gal-C-Dextran:

Galactosylated cationic dextran

GMP:

Gemcitabine monophosphate

HA:

Hyaluronic acid

HNSCC:

Head and neck squamous cell carcinoma

HPV:

Human papillomavirus

IGF:

Insulin-like growth factor

IL2:

Interleukin-2

LNA-Aps:

Locked nucleic acid aptamers

LNPs:

Lipid nanoparticles

MALDI:

Matrix-assisted laser desorption/ionization

MB:

Medulloblastoma

MBA:

Methylenebisacrylamide

MCL1:

Myeloid cell leukemia sequence 1

MCM:

Mobil crystalline materials

MDR:

Multidrug resistance

MRSI:

Magnetic resonance spectroscopic imaging

MTC:

Medullary thyroid cancer

NanoHH1:

Nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1

Nanolipogels:

Nanoscale liposomal polymeric gels

NCPs:

Nanoscale coordination polymers

NCs:

Nanocarriers/nanocapsules

NIR:

Near-infrared

NK:

Natural killer

Nm:

Nanometers

NPC:

Nasopharyngeal cancer

NSCLC:

Non-small-cell lung cancer

ODN:

Oligodeoxynucleotide

OV:

Oncolytic virus

PAMAM:

Poly(amido amine)

PEG:

Polyethylene glycol

PEI:

Polyethyleneimine

PET:

Positron emission tomography

PHA:

PEG-histidine-modified alginate

PLGA-PEG:

Poly(d,l-lactide-co-glycolide)–polyethylene glycol

PLK1:

Polo-like kinase 1

PTCL:

Peripheral T-cell lymphomas

REV3:

Reversionless 3

REV3L:

REV3-like

RNS:

Reactive nitrogen

ROS:

Reactive oxygen

SBA-15:

Santa Barbara Amorphous type material

shRNA:

Short hairpin RNA

SODs:

Superoxide dismutases

SP:

Side population

SPECT:

Single-photon emission computed tomography

STAT3:

Signal transducer and activator of transcription

TAA:

Tumor-associated antigen

TAMs:

Tumor-associated macrophages

TGF-β:

Transforming growth factor-beta

Th:

T-Helper

THBS1:

Thrombospondin 1

TLRs:

Toll-like receptors

TLS:

Translesion DNA synthesis

Tregs:

Regulatory T-cells

XIAP:

X-Linked inhibitor of apoptosis

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  3. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Crawford S. Is it time for a new paradigm for systemic cancer treatment? Lessons from a century of cancer chemotherapy. Front Pharmacol. 2013;4:68.

    PubMed  PubMed Central  Google Scholar 

  5. Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev. 2008;224:141–65.

    CAS  PubMed  Google Scholar 

  6. Ribas A. Immunoediting the cancer genome—a new approach for personalized cancer therapy? Pigment Cell Melanoma Res. 2012;25(3):297–8.

    PubMed  Google Scholar 

  7. Al-Tameemi M, Chaplain M, d'Onofrio A. Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol Direct. 2012;7:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shulin W. Tumor targeted therapies: strategies for killing cancer but not normal cells. Curr Cancer Ther Rev. 2014;10(1):53–61.

    Google Scholar 

  9. Voena C, Chiarle R. Advances in cancer immunology and cancer immunotherapy. Discov Med. 2016;21(114):125–33.

    PubMed  Google Scholar 

  10. Karami F, Noori-Daloii MR, Omidfar K, Tabrizi M, Hantooshzadeh S, Aleyasin A, et al. Modified methylated DNA immunoprecipitation protocol for noninvasive prenatal diagnosis of Down syndrome. J Obstet Gynaecol Res. 2018;44(4):608–13.

    CAS  PubMed  Google Scholar 

  11. Bhise K, Sau S, Alsaab H, Kashaw SK, Tekade RK, Iyer AK. Nanomedicine for cancer diagnosis and therapy: advancement, success and structure-activity relationship. Ther Deliv. 2017;8(11):1003–18.

    CAS  PubMed  Google Scholar 

  12. Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol Rev. 2015;3(2):111–22.

    PubMed  Google Scholar 

  13. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–64.

    CAS  PubMed  Google Scholar 

  14. Chen H, Zhen Z, Todd T, Chu PK, Xie J. Nanoparticles for improving cancer diagnosis. Materi Sci Eng R Rep. 2013;74(3):35–69.

    Google Scholar 

  15. Ma Y-Y, Jin K-T, Wang S-B, Wang H-J, Tong X-M, Huang D-S, et al. Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast media. Mol Imaging. 2017;2017:11.

    Google Scholar 

  16. Blasiak B, van Veggel FCJM, Tomanek B. Applications of nanoparticles for MRI cancer diagnosis and therapy. J Nanomater. 2013;2013:12.

    Google Scholar 

  17. Mellman I. Dendritic cells: master regulators of the immune response. Cancer Immunol Res. 2013;1(3):145–9.

    CAS  PubMed  Google Scholar 

  18. Kaur P, Asea A. Radiation-induced effects and the immune system in cancer. Front Oncol. 2012;2:191.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Whiteside TL. The role of immune cells in the tumor microenvironment. Cancer Treat Res. 2006;130:103–24.

    CAS  PubMed  Google Scholar 

  21. Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450(7171):903–7.

    CAS  PubMed  Google Scholar 

  23. O'Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 2012;209(10):1869–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334(6062):1573–7.

    CAS  PubMed  Google Scholar 

  25. Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013;38(4):729–41.

    CAS  PubMed  Google Scholar 

  26. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res. 2007;13(2 Pt 1):644–53.

    CAS  PubMed  Google Scholar 

  27. Chaturvedi AK, Pfeiffer RM, Chang L, Goedert JJ, Biggar RJ, Engels EA. Elevated risk of lung cancer among people with AIDS. AIDS. 2007;21(2):207–13.

    PubMed  Google Scholar 

  28. Dugue PA, Rebolj M, Garred P, Lynge E. Immunosuppression and risk of cervical cancer. Expert Rev Anticancer Ther. 2013;13(1):29–42.

    CAS  PubMed  Google Scholar 

  29. Kubica AW, Brewer JD. Melanoma in immunosuppressed patients. Mayo Clin Proc. 2012;87(10):991–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang Y-H, Cao Y-F, Jiang Z-Y, Zhang S, Gao F. Th22 cell accumulation is associated with colorectal cancer development. World J Gastroenterol: WJG. 2015;21(14):4216–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin S, Ma S, Huang X, Lu D, Zhou Y, Jiang H. Th22 cells are associated with hepatocellular carcinoma development and progression. Chin J Cancer Res. 2014;26(2):135–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol. 2016;28(8):401–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nouroz F, Bibi F, Noreen S, Masood N. Natural killer cells enhance the immune surveillance of cancer. Egypt J Med Hum Genet. 2016;17(2):149–54.

    Google Scholar 

  34. Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, et al. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res. 1999;59(20):5102–5.

    CAS  PubMed  Google Scholar 

  35. Berrien-Elliott MM, Romee R, Fehniger TA. Improving natural killer cell cancer immunotherapy. Curr Opin Organ Transplant. 2015;20(6):671–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014;44(6):1582–92.

    CAS  PubMed  Google Scholar 

  37. Robertson FC, Berzofsky JA, Terabe M. NKT cell networks in the regulation of tumor immunity. Front Immunol. 2014;5:543.

    PubMed  PubMed Central  Google Scholar 

  38. Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37(12):855–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chiang CL, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: where are we? Vaccines (Basel). 2015;3(2):344–72.

    CAS  Google Scholar 

  40. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.

    CAS  PubMed  Google Scholar 

  41. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.

    CAS  PubMed  Google Scholar 

  42. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.

    CAS  PubMed  Google Scholar 

  43. Binnemars-Postma K, Storm G, Prakash J. Nanomedicine strategies to target tumor-associated macrophages. Int J Mol Sci. 2017;18(5):979.

    PubMed Central  Google Scholar 

  44. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16(7):431–46.

    CAS  PubMed  Google Scholar 

  45. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2011;7(5):651–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO, et al. How do CD4(+) T cells detect and eliminate tumor cells that either lack or express mhc class II molecules? Front Immunol. 2014;5:174.

    PubMed  PubMed Central  Google Scholar 

  47. Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, et al. The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol. 2000;46(Suppl):S52–61.

    CAS  PubMed  Google Scholar 

  48. Conticello C, Pedini F, Zeuner A, Patti M, Zerilli M, Stassi G, et al. IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J Immunol. 2004;172(9):5467–77.

    CAS  PubMed  Google Scholar 

  49. Hoelzinger DB, Dominguez AL, Cohen PA, Gendler SJ. Inhibition of adaptive immunity by IL9 can be disrupted to achieve rapid T-cell sensitization and rejection of progressive tumor challenges. Cancer Res. 2014;74(23):6845–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vegran F, Berger H, Boidot R, Mignot G, Bruchard M, Dosset M, et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol. 2014;15(8):758–66.

    CAS  PubMed  Google Scholar 

  51. Park J, Li H, Zhang M, Lu Y, Hong B, Zheng Y, et al. Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy. Cancer Immunol Immunother. 2014;63(8):835–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye ZJ, Zhou Q, Yin W, Yuan ML, Yang WB, Xiong XZ, et al. Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am J Respir Crit Care Med. 2012;186(11):1168–79.

    CAS  PubMed  Google Scholar 

  53. Ye J, Livergood RS, Peng G. The role and regulation of human Th17 cells in tumor immunity. Am J Pathol. 2013;182(1):10–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu T, Peng L, Yu P, Zhao Y, Shi Y, Mao X, et al. Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer. J Clin Immunol. 2012;32(6):1332–9.

    PubMed  Google Scholar 

  55. Zhang L, Li YG, Li YH, Qi L, Liu XG, Yuan CZ, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One. 2012;7(4):e31000.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH, Guo G, et al. Increased intratumoral IL-22-producing CD4(+) T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother. 2012;61(11):1965–75.

    CAS  PubMed  Google Scholar 

  57. Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel). 2016;4(3):28.

    Google Scholar 

  58. Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol. 2012;13(1):e32–42.

    CAS  PubMed  Google Scholar 

  59. Finotello F, Trajanoski Z. New strategies for cancer immunotherapy: targeting regulatory T cells. Genome Med. 2017;9(1):10.

    PubMed  PubMed Central  Google Scholar 

  60. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1(5023):841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomas L. Discussion. In: Lawrence HS, editor. Cellular and humoral aspects of the hypersensitive states. New York, NY: Hoeber-Harper; 1959.

    Google Scholar 

  62. Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science. 1974;183(4124):534–6.

    CAS  PubMed  Google Scholar 

  63. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    CAS  PubMed  Google Scholar 

  64. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–46.

    CAS  PubMed  Google Scholar 

  66. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012;12(4):307–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Murakami Y. Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci. 2005;96(9):543–52.

    CAS  PubMed  Google Scholar 

  68. Moh MC, Shen S. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox. Cell Adh Migr. 2009;3(4):334–6.

    PubMed  PubMed Central  Google Scholar 

  69. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996;274(5291):1363–6.

    CAS  PubMed  Google Scholar 

  70. Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, et al. Human lung carcinomas express Fas ligand. Cancer Res. 1997;57(6):1007–12.

    CAS  PubMed  Google Scholar 

  71. Bernstorff WV, Glickman JN, Odze RD, Farraye FA, Joo HG, Goedegebuure PS, et al. Fas (CD95/APO-1) and Fas ligand expression in normal pancreas and pancreatic tumors. Implications for immune privilege and immune escape. Cancer. 2002;94(10):2552–60.

    PubMed  Google Scholar 

  72. Mullauer L, Mosberger I, Grusch M, Rudas M, Chott A. Fas ligand is expressed in normal breast epithelial cells and is frequently up-regulated in breast cancer. J Pathol. 2000;190(1):20–30.

    CAS  PubMed  Google Scholar 

  73. Shiraki K, Yamanaka T, Inoue H, Kawakita T, Enokimura N, Okano H, et al. Expression of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. Int J Oncol. 2005;26(5):1273–81.

    CAS  PubMed  Google Scholar 

  74. Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl). 2016;94(5):509–22.

    Google Scholar 

  75. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang X-Y. Therapeutic cancer vaccines: past, present and future. Adv Cancer Res. 2013;119:421–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thomas S, Prendergast GC. Cancer vaccines: a brief overview. Methods Mol Biol. 2016;1403:755–61.

    PubMed  Google Scholar 

  78. Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6(1):e0004.

    PubMed  PubMed Central  Google Scholar 

  79. Phan GQ, Rosenberg SA. Adoptive cell transfer for patients with metastatic melanoma: the potential and promise of cancer immunotherapy. Cancer Control. 2013;20(4):289–97.

    PubMed  Google Scholar 

  80. Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. Mol Cell Ther. 2014;2:25.

    PubMed  PubMed Central  Google Scholar 

  81. Deng Z, Wu Y, Ma W, Zhang S, Zhang YQ. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol. 2015;16:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Almåsbak H, Aarvak T, Vemuri MC. CAR T cell therapy: a game changer in cancer treatment. J Immunol Res. 2016;2016:5474602.

    PubMed  PubMed Central  Google Scholar 

  83. Bollino D, Webb TJ. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl Res. 2017;187:32–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu S, Li A, Liu Q, Li T, Yuan X, Han X, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017;10(1):78.

    PubMed  PubMed Central  Google Scholar 

  85. Dine J, Gordon R, Shames Y, Kasler MK, Barton-Burke M. Immune checkpoint inhibitors: an innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs. 2017;4(2):127–35.

    PubMed  PubMed Central  Google Scholar 

  86. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    PubMed  PubMed Central  Google Scholar 

  87. Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS One. 2016;11(7):e0160221.

    PubMed  PubMed Central  Google Scholar 

  88. Tavakolpour S, Daneshpazhooh M, Mahmoudi H. Skin cancer: genetics, immunology, treatments, and psychological care. In: Mehdipour P, editor. Cancer genetics and psychotherapy. Cham: Springer; 2017.

    Google Scholar 

  89. Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet. 2009;373(9668):1033–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Coulson A, Levy A, Gossell-Williams M. Monoclonal antibodies in cancer therapy: mechanisms, successes and limitations. West Indian Med J. 2014;63(6):650–4.

    CAS  PubMed  Google Scholar 

  91. Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy. 2017;9(3):289–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10(1):58.

    PubMed  PubMed Central  Google Scholar 

  93. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Meerasa A, Huang JG, Gu FX. CH(50): a revisited hemolytic complement consumption assay for evaluation of nanoparticles and blood plasma protein interaction. Curr Drug Deliv. 2011;8(3):290–8.

    CAS  PubMed  Google Scholar 

  96. Vega-Villa KR, Takemoto JK, Yanez JA, Remsberg CM, Forrest ML, Davies NM. Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev. 2008;60(8):929–38.

    CAS  PubMed  Google Scholar 

  97. Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27(24):4356–73.

    CAS  PubMed  Google Scholar 

  98. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Babic M, Horak D, Trchova M, Jendelova P, Glogarova K, Lesny P, et al. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem. 2008;19(3):740–50.

    CAS  PubMed  Google Scholar 

  100. Rosen JE, Gu FX. Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface. Langmuir. 2011;27(17):10507–13.

    CAS  PubMed  Google Scholar 

  101. Weissleder R, Reimer P. Superparamegnetic iron oxides for MRI. Eur Radiol. 1993;3(3):198–212.

    Google Scholar 

  102. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.

    CAS  PubMed  Google Scholar 

  103. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.

    CAS  PubMed  Google Scholar 

  104. Schweiger C, Pietzonka C, Heverhagen J, Kissel T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm. 2011;408(1–2):130–7.

    CAS  PubMed  Google Scholar 

  105. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP. MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A. 2004;101(30):10901–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu D, White RD, Hardy PA, Weerapreeyakul N, Sutthanut K, Jay M. Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent. J Nanosci Nanotechnol. 2006;6(4):996–1003.

    CAS  PubMed  Google Scholar 

  107. Helm L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med Chem. 2010;2(3):385–96.

    CAS  PubMed  Google Scholar 

  108. Kamaly N, Miller AD. Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci. 2010;11(4):1759.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu TW, Chen J, Burgess L, Cao W, Shi J, Wilson BC, et al. Multimodal bacteriochlorophyll theranostic agent. Theranostics. 2011;1:354–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang H, Wu H, Wang J, Yang Y, Wu D, Zhang Y, et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials. 2015;42:66–77.

    PubMed  Google Scholar 

  111. Wang L, Xing H, Zhang S, Ren Q, Pan L, Zhang K, et al. A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials. 2013;34(13):3390–401.

    CAS  PubMed  Google Scholar 

  112. Le W, Cui S, Chen X, Zhu H, Chen B, Cui Z. Facile synthesis of Gd-functionalized gold nanoclusters as potential MRI/CT contrast agents. Nanomaterials (Basel). 2016;6(4):65.

    Google Scholar 

  113. Dave SR, Gao X. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(6):583–609.

    CAS  PubMed  Google Scholar 

  114. Wahajuddin AS. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mahmoudi M, Simchi A, Milani AS, Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2009;336(2):510–8.

    CAS  PubMed  Google Scholar 

  116. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118–22.

    CAS  PubMed  Google Scholar 

  117. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79(939):248–53.

    CAS  PubMed  Google Scholar 

  118. Tang D, Gao W, Yuan Y, Guo L, Mei X. Novel biocompatible Au nanostars@PEG nanoparticles for in vivo CT imaging and renal clearance properties. Nanoscale Res Lett. 2017;12(1):565.

    PubMed  PubMed Central  Google Scholar 

  119. Kanavi MR, Asadi S, Ahmadieh H. Ex vivo distribution of gold nanoparticles in choroidal melanoma. Int J Nanomedicine. 2017;12:8527–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661–5.

    CAS  PubMed  Google Scholar 

  121. Uthaman S, Kim HS, Revuri V, Min JJ, Lee YK, Huh KM, et al. Green synthesis of bioactive polysaccharide-capped gold nanoparticles for lymph node CT imaging. Carbohydr Polym. 2018;181:27–33.

    CAS  PubMed  Google Scholar 

  122. Uddin I, Ahmad A, Siddiqui EA, Rahaman SH, Gambhir S. Biosynthesis of fluorescent Bi2S3 nanoparticles and their application as dual-function SPECT-CT probe for animal imaging. Curr Top Med Chem. 2016;16(18):2019–25.

    CAS  PubMed  Google Scholar 

  123. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399(1):3–27.

    CAS  PubMed  Google Scholar 

  124. Kim J, Lee N, Hyeon T. Recent development of nanoparticles for molecular imaging. Philos Trans A Math Phys Eng Sci. 2017;375(2107):20170022.

    PubMed  PubMed Central  Google Scholar 

  125. Stockhofe K, Postema JM, Schieferstein H, Ross TL. Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel). 2014;7(4):392–418.

    CAS  Google Scholar 

  126. Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today. 2009;4(5):399–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pellico J, Llop J. Iron oxide nanoradiomaterials: combining nanoscale properties with radioisotopes for enhanced molecular imaging. Contrast Media Mol Imaging. 2017;2017:1549580.

    PubMed  PubMed Central  Google Scholar 

  128. Braeken Y, Cheruku S, Ethirajan A, Maes W. Conjugated polymer nanoparticles for bioimaging. Materials (Basel). 2017;10(12):pii: E1420.

    Google Scholar 

  129. Wang K, He X, Yang X, Shi H. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res. 2013;46(7):1367–76.

    CAS  PubMed  Google Scholar 

  130. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–33.

    CAS  PubMed  Google Scholar 

  131. Colombo I, Overchuk M, Chen J, Reilly RM, Zheng G, Lheureux S. Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology. Methods (San Diego, Calif). 2017;130:23–35.

    CAS  Google Scholar 

  132. Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev. 2014;72:15–27.

    CAS  PubMed  Google Scholar 

  133. Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr Probl Cardiol. 2003;28(12):625–53.

    PubMed  Google Scholar 

  134. Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4(11):1072–84.

    PubMed  PubMed Central  Google Scholar 

  135. Handgraaf HJM, Boogerd LSF, Hoppener DJ, Peloso A, Sibinga Mulder BG, Hoogstins CES, et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter analysis. Eur J Surg Oncol. 2017;43(8):1463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cui L, Lin Q, Jin CS, Jiang W, Huang H, Ding L, et al. A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics. ACS Nano. 2015;9(4):4484–95.

    CAS  PubMed  Google Scholar 

  137. Ng KK, Shakiba M, Huynh E, Weersink RA, Roxin A, Wilson BC, et al. Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano. 2014;8(8):8363–73.

    CAS  PubMed  Google Scholar 

  138. Reilly RM, Lam K, Chan C, Levine M. Advancing novel molecular imaging agents from preclinical studies to first-in-humans phase I clinical trials in academia—a roadmap for overcoming perceived barriers. Bioconjug Chem. 2015;26(4):625–32.

    CAS  PubMed  Google Scholar 

  139. Lanza GM, Moonen C, Baker JR Jr, Chang E, Cheng Z, Grodzinski P, et al. Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(1):1–14.

    CAS  PubMed  Google Scholar 

  140. Jimmy R, Stern C, Lisy K, White S. Effectiveness of mifamurtide in addition to standard chemotherapy for high-grade osteosarcoma: a systematic review. JBI Database System Rev Implement Rep. 2017;15(8):2113–52.

    PubMed  Google Scholar 

  141. Pranjal Chandra. Institution of Engineering and Technology; 2016.

    Google Scholar 

  142. Costa C, Abal M, Lopez-Lopez R, Muinelo-Romay L. Biosensors for the detection of circulating tumour cells. Sensors (Basel). 2014;14(3):4856–75.

    Google Scholar 

  143. Goda T, Masuno K, Nishida J, Kosaka N, Ochiya T, Matsumoto A, et al. A label-free electrical detection of exosomal microRNAs using microelectrode array. Chem Commun. 2012;48(98):11942–4.

    CAS  Google Scholar 

  144. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–63.

    CAS  PubMed  Google Scholar 

  145. Gu Y, Ju C, Li Y, Shang Z, Wu Y, Jia Y, et al. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens Bioelectron. 2015;66:24–31.

    CAS  PubMed  Google Scholar 

  146. Shaibani PM, Etayash H, Naicker S, Kaur K, Thundat T. Metabolic study of cancer cells using a pH sensitive hydrogel nanofiber light addressable potentiometric sensor. ACS Sensors. 2017;2(1):151–6.

    CAS  PubMed  Google Scholar 

  147. Zhang L, Yu C, Gao R, Niu Y, Li Y, Chen J, et al. An impedimetric biosensor for the diagnosis of renal cell carcinoma based on the interaction between 3-aminophenyl boronic acid and sialic acid. Biosens Bioelectron. 2017;92:434–41.

    CAS  PubMed  Google Scholar 

  148. Kim D-M, Noh H-B, Park DS, Ryu S-H, Koo JS, Shim Y-B. Immunosensors for detection of Annexin II and MUC5AC for early diagnosis of lung cancer. Biosens Bioelectron. 2009;25(2):456–62.

    CAS  PubMed  Google Scholar 

  149. Zhang X, Wu D, Liu Z, Cai S, Zhao Y, Chen M, et al. An ultrasensitive label-free electrochemical biosensor for microRNA-21 detection based on a 2[prime or minute]-O-methyl modified DNAzyme and duplex-specific nuclease assisted target recycling. Chem Commun. 2014;50(82):12375–7.

    CAS  Google Scholar 

  150. Kumar S, Sharma JG, Maji S, Malhotra BD. A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Adv. 2016;6(80):77037–46.

    CAS  Google Scholar 

  151. Zhu Y, Chandra P, Shim Y-B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine—au nanoparticle–aptamer bioconjugate. Anal Chem. 2013;85(2):1058–64.

    CAS  PubMed  Google Scholar 

  152. Damiati S, Küpcü S, Peacock M, Eilenberger C, Zamzami M, Qadri I, et al. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron. 2017;94:500–6.

    CAS  PubMed  Google Scholar 

  153. Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014;2014:12.

    Google Scholar 

  154. Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–8.

    PubMed  PubMed Central  Google Scholar 

  155. Bazak R, Houri M, Achy SE, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–84.

    CAS  PubMed  Google Scholar 

  156. Wang Y, Santos A, Evdokiou A, Losic D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J Mater Chem B. 2015;3(36):7153–72.

    CAS  PubMed  Google Scholar 

  157. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–91.

    PubMed  PubMed Central  Google Scholar 

  159. Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010;267(1):89–105.

    CAS  PubMed  Google Scholar 

  160. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3–8.

    CAS  PubMed  Google Scholar 

  161. Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel). 2015;5(3):1163–80.

    CAS  Google Scholar 

  162. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:761264.

    PubMed  PubMed Central  Google Scholar 

  163. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Lu X, Ji C, Jin T, Fan X. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice. Nanotechnology. 2015;26(17):175101.

    PubMed  Google Scholar 

  165. Zhang Y, Xu D, Li W, Yu J, Chen Y. Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J Nanomater. 2012;2012:7.

    Google Scholar 

  166. Alemán JV, Chadwick AV, He J, Hess M, Horie K, Jones RG, et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem. 2007;2007:1801.

    Google Scholar 

  167. Newsmagazine for IUPAC. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Chem Int. 2012;2012:25.

    Google Scholar 

  168. Kumbhakar P, Ray SS, Stepanov AL. Optical properties of nanoparticles and nanocomposites. J Nanomater. 2014;2014:2.

    Google Scholar 

  169. Turner T. Transparent silver and other metallic films. Proc R Soc Lond Ser A. 1908;81:301–10.

    Google Scholar 

  170. Faraday M. The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond. 1857;147:145–81.

    Google Scholar 

  171. Saxena U, Goswami P. Electrical and optical properties of gold nanoparticles: applications in gold nanoparticles-cholesterol oxidase integrated systems for cholesterol sensing. J Nanopart Res. 2012;14(4):813.

    Google Scholar 

  172. Cao YC, Jin R, Thaxton CS, Mirkin CA. A two-color-change, nanoparticle-based method for DNA detection. Talanta. 2005;67(3):449–55.

    CAS  PubMed  Google Scholar 

  173. Verma MS, Rogowski JL, Jones L, Gu FX. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv. 2015;33(6 Pt 1):666–80.

    CAS  PubMed  Google Scholar 

  174. Piriya VSA, Joseph P, Daniel SCGK, Lakshmanan S, Kinoshita T, Muthusamy S. Colorimetric sensors for rapid detection of various analytes. Korean J Couns Psychother. 2017;78:1231–45.

    Google Scholar 

  175. Kim J-Y, Lee J-S. Synthesis and thermally reversible assembly of DNA−gold nanoparticle cluster conjugates. Nano Lett. 2009;9(12):4564–9.

    CAS  PubMed  Google Scholar 

  176. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583–92.

    CAS  PubMed  Google Scholar 

  177. Evans AG. Considerations of Inhomogeneity effects in sintering. J Am Ceram Soc. 1982;65(10):497–501.

    CAS  Google Scholar 

  178. Rao CN, Biswas K. Characterization of nanomaterials by physical methods. Annu Rev Analyt Chem. 2009;2:435–62.

    CAS  Google Scholar 

  179. Mahl D, Diendorf J, Meyer-Zaika W, Epple M. Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf A Physicochem Eng Asp. 2011;377(1):386–92.

    CAS  Google Scholar 

  180. Kumar V, Guleria P, Kumar V, Yadav SK. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ. 2013;461–462:462–8.

    PubMed  Google Scholar 

  181. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc. 2011;21(6):2057–68.

    CAS  PubMed  Google Scholar 

  182. Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Korean J Couns Psychother. 2017;76:1289–304.

    CAS  Google Scholar 

  183. Sanginario A, Miccoli B, Demarchi D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors. 2017;7(1):9.

    PubMed Central  Google Scholar 

  184. Martínez A, Iglesias I, Lozano R, Teijón JM, Blanco MD. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr Polym. 2011;83(3):1311–21.

    Google Scholar 

  185. Bilensoy E, Sarisozen C, Esendagli G, Dogan AL, Aktas Y, Sen M, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of mitomycin C to bladder tumors. Int J Pharm. 2009;371(1–2):170–6.

    CAS  PubMed  Google Scholar 

  186. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59(8):3485–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Nguyen KT. Targeted nanoparticles for cancer therapy: promises and challenges. J Nanomed Nanotechnol. 2011;2:103e. https://doi.org/10.4172/2157-7439.1000103e.

    Article  CAS  Google Scholar 

  188. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

    CAS  PubMed  Google Scholar 

  189. Ledford H. Bankruptcy filing worries developers of nanoparticle cancer drugs. Nature. 2016;533(7603):304–5.

    CAS  PubMed  Google Scholar 

  190. Stegh AH. Toward personalized cancer nanomedicine – past, present, and future. Integr Biol. 2013;5(1) https://doi.org/10.1039/c2ib20104f.

  191. Sahakyan N, Haddad A, Richardson S, Forcha-Etieundem V, Christopher L, Alharbi H, et al. Personalized nanoparticles for cancer therapy: a call for greater precision. Anticancer Agents Med Chem. 2017;17(8):1033–9.

    CAS  PubMed  Google Scholar 

  192. Tiwari M. Apoptosis, angiogenesis and cancer therapies. J Cancer Thera Res. 2012;1(1):1–10.

    Google Scholar 

  193. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80.

    CAS  PubMed  Google Scholar 

  194. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem. 1998;273(21):13313–6.

    CAS  PubMed  Google Scholar 

  195. Fayette J, Soria JC, Armand JP. Use of angiogenesis inhibitors in tumour treatment. Eur J Cancer. 2005;41(8):1109–16.

    CAS  PubMed  Google Scholar 

  196. Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.

    CAS  PubMed  Google Scholar 

  197. Costa PM, Cardoso AL, Custodia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9.

    CAS  PubMed  Google Scholar 

  198. Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett. 2011;11(2):772–80.

    CAS  PubMed  Google Scholar 

  199. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31(30):7606–19.

    CAS  PubMed  Google Scholar 

  200. Mohan JC, Praveen G, Chennazhi KP, Jayakumar R, Nair SV. Functionalised gold nanoparticles for selective induction of in vitro apoptosis among human cancer cell lines. J Exp Nanosci. 2013;8(1):32–45.

    CAS  Google Scholar 

  201. Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132(5):1517–9.

    CAS  PubMed  Google Scholar 

  202. Choudhury D, Xavier PL, Chaudhari K, John R, Dasgupta AK, Pradeep T, et al. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis. Nanoscale. 2013;5(10):4476–89.

    CAS  PubMed  Google Scholar 

  203. Arvizo RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc Natl Acad Sci U S A. 2013;110(17):6700–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed Nanotechnol Biol Med. 2011;7(5):580–7.

    CAS  Google Scholar 

  205. Li W, Zhao X, Du B, Li X, Liu S, Yang XY, et al. Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Sci Rep. 2016;6:30619.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bucharskaya A, Maslyakova G, Terentyuk G, Yakunin A, Avetisyan Y, Bibikova O, et al. Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles. Int J Mol Sci. 2016;17(8):1295.

    PubMed Central  Google Scholar 

  207. Sojinrin T, Conde J, Liu K, Curtin J, Byrne HJ, Cui D, et al. Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections. Anal Bioanal Chem. 2017;409(19):4647–58.

    CAS  PubMed  Google Scholar 

  208. Tzarouchis DC, Ylä-Oijala P, Ala-Nissila T, Sihvola A. Shape effects on surface plasmons in spherical, cubic, and rod-shaped silver nanoparticles. Appl Phys A. 2016;122(4):298.

    Google Scholar 

  209. Yin R, Agrawal T, Khan U, Gupta GK, Rai V, Huang YY, et al. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs. Nanomedicine (Lond). 2015;10(15):2379–404.

    CAS  Google Scholar 

  210. Chitgupi U, Qin Y, Lovell JF. Targeted nanomaterials for phototherapy. Nanotheranostics. 2017;1(1):38–58.

    PubMed  PubMed Central  Google Scholar 

  211. Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang XH. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016;11:6679–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Rekha K, Ashok M, Bangrey RS, Reena M, Kuldeep D, Sharma NC. Evaluation of silver nanoparticle mediated reduction of neovascularisation (angiogenesis) in chicken model. Adv Anim Vet Sci. 2015;3(7):372–6.

    Google Scholar 

  213. Yilmaz VT, Icsel C, Batur J, Aydinlik S, Cengiz M, Buyukgungor O. Synthesis, structures and biomolecular interactions of new silver(i) 5,5-diethylbarbiturate complexes of monophosphines targeting Gram-positive bacteria and breast cancer cells. Dalton Trans. 2017;46(25):8110–24.

    CAS  PubMed  Google Scholar 

  214. Satapathy SR, Mohapatra P, Preet R, Das D, Sarkar B, Choudhuri T, et al. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine (Lond). 2013;8(8):1307–22.

    CAS  Google Scholar 

  215. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, et al. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. Peel extract. Nanoscale Res Lett. 2016;11(1):300.

    PubMed  PubMed Central  Google Scholar 

  216. Kovacs D, Igaz N, Keskeny C, Belteky P, Toth T, Gaspar R, et al. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Sci Rep. 2016;6:27902.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine. 2017;12:6487–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Choi YJ, Park JH, Han JW, Kim E, Jae-Wook O, Lee SY, et al. Differential cytotoxic potential of silver nanoparticles in human ovarian cancer cells and ovarian cancer stem cells. Int J Mol Sci. 2016;17(12):2077.

    PubMed Central  Google Scholar 

  219. Almada M, Burboa MG, Robles E, Gutiérrez LE, Valdés MA, Juárez J. Interaction and cytotoxic effects of hydrophobized chitosan nanoparticles on MDA-MB-231, HeLa and Arpe-19 cell lines. Curr Top Med Chem. 2014;14(6):692–701.

    Google Scholar 

  220. Gary-Bobo M, Brevet D, Benkirane-Jessel N, Raehm L, Maillard P, Garcia M, et al. Hyaluronic acid-functionalized mesoporous silica nanoparticles for efficient photodynamic therapy of cancer cells. Photodiagnosis Photodyn Ther. 2012;9(3):256–60.

    CAS  PubMed  Google Scholar 

  221. Wang H, Zhang S, Tian X, Liu C, Zhang L, Hu W, et al. High sensitivity of gold nanoparticles co-doped with Gd2O3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells. Sci Rep. 2016;6:34367.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Guarnieri D, Malvindi MA, Belli V, Pompa PP, Netti P. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res. 2014;16(2):2229.

    Google Scholar 

  223. Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomed Nanotechnol Biol Med. 2012;8(5):784–91.

    CAS  Google Scholar 

  224. Kim M, Park JH, Jeong H, Hong J, Choi WS, Lee BH, et al. An evaluation of the in vivo safety of nonporous silica nanoparticles: ocular topical administration versus oral administration. Sci Rep. 2017;7(1):8238.

    PubMed  PubMed Central  Google Scholar 

  225. Feng Y, Su J, Zhao Z, Zheng W, Wu H, Zhang Y, et al. Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles. Dalton Trans. 2014;43(4):1854–61.

    CAS  PubMed  Google Scholar 

  226. Bao P, Chen Z, Tai RZ, Shen HM, Martin FL, Zhu YG. Selenite-induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles. J Proteome Res. 2015;14(2):1127–36.

    CAS  PubMed  Google Scholar 

  227. Bao P, Chen SC, Xiao KQ. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: a deep insight into the interaction between endogenous SeNPs and proteins. Mol Biosyst. 2015;11(12):3355–61.

    CAS  PubMed  Google Scholar 

  228. Yu Q, Liu Y, Cao C, Le F, Qin X, Sun D, et al. The use of pH-sensitive functional selenium nanoparticles shows enhanced in vivo VEGF-siRNA silencing and fluorescence imaging. Nanoscale. 2014;6(15):9279–92.

    CAS  PubMed  Google Scholar 

  229. Sun D, Liu Y, Yu Q, Zhou Y, Zhang R, Chen X, et al. The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling. Biomaterials. 2013;34(1):171–80.

    CAS  PubMed  Google Scholar 

  230. Fu X, Yang Y, Li X, Lai H, Huang Y, He L, et al. RGD peptide-conjugated selenium nanoparticles: antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway. Nanomed Nanotechnol Biol Med. 2016;12(6):1627–39.

    CAS  Google Scholar 

  231. Yalcin M, Bharali DJ, Lansing L, Dyskin E, Mousa SS, Hercbergs A, et al. Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res. 2009;29(10):3825–31.

    CAS  PubMed  Google Scholar 

  232. Glinskii AB, Glinsky GV, Lin HY, Tang HY, Sun M, Davis FB, et al. Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle. 2009;8(21):3562–70.

    CAS  PubMed  Google Scholar 

  233. Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, et al. Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab. 2010;95(4):1972–80.

    CAS  PubMed  Google Scholar 

  234. Yalcin M, Bharali DJ, Dyskin E, Dier E, Lansing L, Mousa SS, et al. Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid. 2010;20(3):281–6.

    CAS  PubMed  Google Scholar 

  235. Lin HY, Landersdorfer CB, London D, Meng R, Lim CU, Lin C, et al. Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput Biol. 2011;7(2):e1001073.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Yoshida T, Gong J, Xu Z, Wei Y, Duh EJ. Inhibition of pathological retinal angiogenesis by the integrin alphavbeta3 antagonist tetraiodothyroacetic acid (tetrac). Exp Eye Res. 2012;94(1):41–8.

    CAS  PubMed  Google Scholar 

  237. Shinderman-Maman E, Cohen K, Moskovich D, Hercbergs A, Werner H, Davis PJ, et al. Thyroid hormones derivatives reduce proliferation and induce cell death and DNA damage in ovarian cancer. Sci Rep. 2017;7(1):16475.

    PubMed  PubMed Central  Google Scholar 

  238. Sudha T, Bharali DJ, Sell S, Darwish NHE, Davis PJ, Mousa SA. Nanoparticulate tetrac inhibits growth and vascularity of glioblastoma xenografts. Hormones Cancer. 2017;8(3):157–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Contr Release. 2017;264:306–32.

    CAS  Google Scholar 

  240. Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34.

    CAS  PubMed  Google Scholar 

  241. Jia J, Zhu F, Ma X, Cao Z, Cao ZW, Li Y, et al. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8(2):111–28.

    CAS  PubMed  Google Scholar 

  242. Miao L, Guo S, Lin CM, Liu Q, Huang L. Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev. 2017;115:3–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    CAS  PubMed  Google Scholar 

  244. Xiao B, Ma L, Merlin D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin Drug Deliv. 2017;14(1):65–73.

    CAS  PubMed  Google Scholar 

  245. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4(8):4539–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7(2):994–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev. 2013;65(13–14):1784–802.

    CAS  PubMed  Google Scholar 

  248. Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928–39.

    CAS  PubMed  Google Scholar 

  249. Zheng Y, Su C, Zhao L, Shi Y. mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy. J Nanobiotechnol. 2017;15(1):66.

    Google Scholar 

  250. Wang J, Li L, Wu L, Sun B, Du Y, Sun J, et al. Development of novel self-assembled ES-PLGA hybrid nanoparticles for improving oral absorption of doxorubicin hydrochloride by P-gp inhibition: In vitro and in vivo evaluation. Eur J Pharm Sci. 2017;99:185–92.

    CAS  PubMed  Google Scholar 

  251. Deng L, Su TT, Huang XL, Wang YH, Li C. Co-delivery of paclitaxel and cyclosporine by a novel liposome-silica hybrid nano-carrier for anti-tumor therapy via oral route. Acta Pharm Sin. 2014;49(1):106–14.

    CAS  Google Scholar 

  252. Sadekar S, Thiagarajan G, Bartlett K, Hubbard D, Ray A, McGill LD, et al. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin. Int J Pharm. 2013;456(1):175–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Li X, He Q, Shi J. Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS Nano. 2014;8(2):1309–20.

    CAS  PubMed  Google Scholar 

  254. Li X, Pan L, Shi J. Nuclear-targeting MSNs-based drug delivery system: global gene expression analysis on the MDR-overcoming mechanisms. Adv Healthc Mater. 2015;4(17):2641–8.

    CAS  PubMed  Google Scholar 

  255. He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 2011;32(30):7711–20.

    CAS  PubMed  Google Scholar 

  256. Liu H, Zhang Z, Chi X, Zhao Z, Huang D, Jin J, et al. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells. Sci Rep. 2016;6:31009.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Liu Z, Yan H, Li H. Silencing of DNA repair sensitizes pediatric brain tumor cells to gamma-irradiation using gold nanoparticles. Environ Toxicol Pharmacol. 2017;53:40–5.

    CAS  PubMed  Google Scholar 

  259. Kievit FM, Stephen ZR, Wang K, Dayringer CJ, Sham JG, Ellenbogen RG, et al. Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to gamma-irradiation. Mol Oncol. 2015;9(6):1071–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016;99(Pt A):129–37.

    CAS  PubMed  Google Scholar 

  261. Ku SH, Jo SD, Lee YK, Kim K, Kim SH. Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev. 2016;104:16–28.

    CAS  PubMed  Google Scholar 

  262. Zatsepin TS, Kotelevtsev YV, Koteliansky V. Lipid nanoparticles for targeted siRNA delivery - going from bench to bedside. Int J Nanomedicine. 2016;11:3077–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhao J. Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther. 2016;160:145–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Yun EJ, Lo UG, Hsieh JT. The evolving landscape of prostate cancer stem cell: therapeutic implications and future challenges. Asian J Urol. 2016;3(4):203–10.

    PubMed  PubMed Central  Google Scholar 

  265. Bednar F, Simeone DM. Pancreatic cancer stem cells and relevance to cancer treatments. J Cell Biochem. 2009;107(1):40–5.

    CAS  PubMed  Google Scholar 

  266. Zhao YD, Zhang QB, Chen H, Fei XF, Shen YT, Ji XY, et al. Research on human glioma stem cells in China. Neural Regen Res. 2017;12(11):1918–26.

    PubMed  PubMed Central  Google Scholar 

  267. Manhas J, Bhattacharya A, Agrawal SK, Gupta B, Das P, Deo SV, et al. Characterization of cancer stem cells from different grades of human colorectal cancer. Tumour Biol. 2016;37(10):14069–81.

    CAS  PubMed  Google Scholar 

  268. Rodini CO, Lopes NM, Lara VS, Mackenzie IC. Oral cancer stem cells - properties and consequences. J Appl Oral Sci. 2017;25(6):708–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Richard V, Nair MG, Santhosh Kumar TR, Pillai MR. Side population cells as prototype of chemoresistant, tumor-initiating cells. Biomed Res Int. 2013;2013:517237.

    PubMed  PubMed Central  Google Scholar 

  270. Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2(1):3.

    PubMed  PubMed Central  Google Scholar 

  271. Bolton-Gillespie E, Schemionek M, Klein HU, Flis S, Hoser G, Lange T, et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood. 2013;121(20):4175–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5(4):474–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Yang Y, Jing L, Li X, Lin L, Yue X, Dai Z. Hyaluronic acid conjugated magnetic prussian Blue@Quantum dot nanoparticles for cancer theranostics. Theranostics. 2017;7(2):466–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Ma L, Liu T, Jin Y, Wei J, Yang Y, Zhang H. ABCG2 is required for self-renewal and chemoresistance of CD133-positive human colorectal cancer cells. Tumour Biol. 2016;37(9):12889–96.

    CAS  PubMed  Google Scholar 

  275. An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 2009;5(12):1529–42.

    CAS  PubMed  Google Scholar 

  276. Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG. A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther. 2011;11(5):464–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Xu Y, Chenna V, Hu C, Sun HX, Khan M, Bai H, et al. Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res. 2012;18(5):1291–302.

    CAS  PubMed  Google Scholar 

  278. Burke AR, Singh RN, Carroll DL, Wood JC, D'Agostino RB Jr, Ajayan PM, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials. 2012;33(10):2961–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Zhou M, Zhao J, Tian M, Song S, Zhang R, Gupta S, et al. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale. 2015;7(46):19438–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Morgenroth A, Cartellieri M, Schmitz M, Gunes S, Weigle B, Bachmann M, et al. Targeting of tumor cells expressing the prostate stem cell antigen (PSCA) using genetically engineered T-cells. Prostate. 2007;67(10):1121–31.

    CAS  PubMed  Google Scholar 

  281. Wu H, Shi H, Zhang H, Wang X, Yang Y, Yu C, et al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials. 2014;35(20):5369–80.

    CAS  PubMed  Google Scholar 

  282. Andey T, Marepally S, Patel A, Jackson T, Sarkar S, O'Connell M, et al. Cationic lipid guided short-hairpin RNA interference of annexin A2 attenuates tumor growth and metastasis in a mouse lung cancer stem cell model. J Contr Release. 2014;184:67–78.

    CAS  Google Scholar 

  283. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4(8):e6816.

    PubMed  PubMed Central  Google Scholar 

  285. Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer. 2008;8:266.

    PubMed  PubMed Central  Google Scholar 

  286. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69(19):7569–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Piao L, Zhang M, Datta J, Xie X, Su T, Li H, et al. Lipid-based nanoparticle delivery of Pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Mol Ther. 2012;20(6):1261–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Liu C, Zhao G, Liu J, Ma N, Chivukula P, Perelman L, et al. Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Contr Release. 2009;140(3):277–83.

    CAS  Google Scholar 

  289. Yin D, Ogawa S, Kawamata N, Leiter A, Ham M, Li D, et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene. 2013;32(9):1155–63.

    CAS  PubMed  Google Scholar 

  290. Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther. 2011;10(8):1470–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Zhou F, et al. MiR-34a targeted Notch2 to induce apoptosis of medullary thyroid carcinoma cells. Int J Clin Exp Pathol. 2017;10(5):5612–7.

    CAS  Google Scholar 

  292. Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34(13):3489–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Yoon HY, Kim HR, Saravanakumar G, Heo R, Chae SY, Um W, et al. Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting. J Contr Release. 2013;172(3):653–61.

    CAS  Google Scholar 

  294. Shen Y, Wang B, Lu Y, Ouahab A, Li Q, Tu J. A novel tumor-targeted delivery system with hydrophobized hyaluronic acid-spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. Int J Pharm. 2011;414(1–2):233–43.

    CAS  PubMed  Google Scholar 

  295. Dreaden EC, Morton SW, Shopsowitz KE, Choi JH, Deng ZJ, Cho NJ, et al. Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano. 2014;8(8):8374–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N, et al. Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond). 2015;10(1):35–55.

    CAS  Google Scholar 

  297. Roy K, Kanwar RK, Kanwar JR. LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR. MRI and CT imaging Biomaterials. 2015;71:84–99.

    CAS  PubMed  Google Scholar 

  298. Wang T, Gantier MP, Xiang D, Bean AG, Bruce M, Zhou SF, et al. EpCAM aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics. 2015;5(12):1456–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L, et al. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials. 2014;35(12):3840–50.

    CAS  PubMed  Google Scholar 

  300. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect. 2015;3(3):e00149.

    PubMed  PubMed Central  Google Scholar 

  302. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Contr Release. 2014;190:352–70.

    CAS  Google Scholar 

  304. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710.

    CAS  PubMed  Google Scholar 

  305. He C, Liu D, Lin W. Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. Biomaterials. 2015;36:124–33.

    CAS  PubMed  Google Scholar 

  306. Oshima G, Guo N, He C, Stack ME, Poon C, Uppal A, et al. In vivo delivery and therapeutic effects of a microRNA on colorectal liver metastases. Mol Ther. 2017;25(7):1588–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Song XR, Cai Z, Zheng Y, He G, Cui FY, Gong DQ, et al. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci. 2009;37(3–4):300–5.

    CAS  PubMed  Google Scholar 

  308. Guo S, Lin CM, Xu Z, Miao L, Wang Y, Huang L. Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS Nano. 2014;8(5):4996–5009.

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers. 2010;7(3):543–66.

    CAS  PubMed  Google Scholar 

  310. Zhao Y, Biertumpfel C, Gregory MT, Hua YJ, Hanaoka F, Yang W. Structural basis of human DNA polymerase eta-mediated chemoresistance to cisplatin. Proc Natl Acad Sci U S A. 2012;109(19):7269–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Xu X, Xie K, Zhang XQ, Pridgen EM, Park GY, Cui DS, et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci U S A. 2013;110(46):18638–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Miao L, Guo S, Zhang J, Kim WY, Huang L. Nanoparticles with precise ratiometric co-loading and co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer. Adv Funct Mater. 2014;24(42):6601–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  313. Franco MS, Oliveira MC. Ratiometric drug delivery using non-liposomal nanocarriers as an approach to increase efficacy and safety of combination chemotherapy. Biomed Pharmacother. 2017;96:584–95.

    CAS  PubMed  Google Scholar 

  314. Shuhendler AJ, Cheung RY, Manias J, Connor A, Rauth AM, Wu XY. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res Treat. 2010;119(2):255–69.

    CAS  PubMed  Google Scholar 

  315. Prasad P, Shuhendler A, Cai P, Rauth AM, Wu XY. Doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts. Cancer Lett. 2013;334(2):263–73.

    CAS  PubMed  Google Scholar 

  316. Shuhendler AJ, Prasad P, Zhang RX, Amini MA, Sun M, Liu PP, et al. Synergistic nanoparticulate drug combination overcomes multidrug resistance, increases efficacy, and reduces cardiotoxicity in a nonimmunocompromised breast tumor model. Mol Pharm. 2014;11(8):2659–74.

    CAS  PubMed  Google Scholar 

  317. Zhang T, Prasad P, Cai P, He C, Shan D, Rauth AM, et al. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol Sin. 2017;38(6):835–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, et al. Evolution and clinical translation of drug delivery nanomaterials. Nano Today. 2017;15:91–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Barenholz Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Contr Release. 2012;160(2):117–34.

    CAS  Google Scholar 

  321. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001;19(14):3312–22.

    CAS  PubMed  Google Scholar 

  322. Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev. 2017;110–111:80–101.

    PubMed  Google Scholar 

  323. Wang Y, Cui Y, Zhao Y, Zhao Q, He B, Zhang Q, et al. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. J Colloid Interface Sci. 2017;513:736–47.

    PubMed  Google Scholar 

  324. Foss F. Clinical experience with denileukin diftitox (ONTAK). Semin Oncol. 2006;33(1 Suppl 3):S11–6.

    CAS  PubMed  Google Scholar 

  325. Ansari L, Shiehzadeh F, Taherzadeh Z, Nikoofal-Sahlabadi S, Momtazi-Borojeni AA, Sahebkar A, et al. The most prevalent side effects of pegylated liposomal doxorubicin monotherapy in women with metastatic breast cancer: a systematic review of clinical trials. Cancer Gene Ther. 2017;24(5):189–93.

    CAS  PubMed  Google Scholar 

  326. Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updates. 2016;29:90–106.

    Google Scholar 

  327. Rosenthal E, Poizot-Martin I, Saint-Marc T, Spano JP, Cacoub P. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol. 2002;25(1):57–9.

    PubMed  Google Scholar 

  328. Ferguson EL, Scomparin A, Hailu H, Satchi-Fainaro R. HPMA copolymer-phospholipase C and dextrin-phospholipase A2 as model triggers for polymer enzyme liposome therapy (PELT). J Drug Target. 2017;25(9–10):818–28.

    CAS  PubMed  Google Scholar 

  329. van Bree C, Krooshoop JJ, Rietbroek RC, Kipp JB, Bakker PJ. Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res. 1996;56(3):563–8.

    PubMed  Google Scholar 

  330. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, et al. Abraxane, a novel cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17(8):1263–8.

    CAS  PubMed  Google Scholar 

  331. Fridrik MA, Jaeger U, Petzer A, Willenbacher W, Keil F, Lang A, et al. Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma: A randomised phase-III study from the Austrian Cancer Drug Therapy Working Group [Arbeitsgemeinschaft Medikamentose Tumortherapie AGMT](NHL-14). Eur J Cancer. 2016;58:112–21.

    CAS  PubMed  Google Scholar 

  332. Ur Rehman SS, Lim K, Wang-Gillam A. Nanoliposomal irinotecan plus fluorouracil and folinic acid: a new treatment option in metastatic pancreatic cancer. Expert Rev Anticancer Ther. 2016;16(5):485–92.

    PubMed  Google Scholar 

  333. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat RevMater. 2016;1:16014.

    CAS  Google Scholar 

  334. Jiang W, von Roemeling CA, Chen Y, Qie Y, Liu X, Chen J, et al. Designing nanomedicine for immuno-oncology. Nat Biomed Eng. 2017;1:0029.

    CAS  Google Scholar 

  335. Jia Y, Omri A, Krishnan L, McCluskie MJ. Potential applications of nanoparticles in cancer immunotherapy. Hum Vaccin Immunother. 2017;13(1):63–74.

    PubMed  Google Scholar 

  336. Kosmides AK, Sidhom JW, Fraser A, Bessell CA, Schneck JP. Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano. 2017;11(6):5417–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Yao H, Ng SS, Huo LF, Chow BK, Shen Z, Yang M, et al. Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle. Mol Cancer Ther. 2011;10(6):1082–92.

    CAS  PubMed  Google Scholar 

  338. Massagué J. TGFβ in Cancer. Cell. 2008;134(2):215–30.

    PubMed  PubMed Central  Google Scholar 

  339. Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res. 2011;28(2):215–36.

    CAS  PubMed  Google Scholar 

  340. Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines (Basel). 2015;3(3):662–85.

    CAS  Google Scholar 

  341. Goldberg MS. Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell. 2015;161(2):201–4.

    CAS  PubMed  Google Scholar 

  342. de Titta A, Ballester M, Julier Z, Nembrini C, Jeanbart L, van der Vlies AJ, et al. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc Natl Acad Sci U S A. 2013;110(49):19902–7.

    PubMed  PubMed Central  Google Scholar 

  343. Fox CB, Sivananthan SJ, Duthie MS, Vergara J, Guderian JA, Moon E, et al. A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. J Nanobiotechnol. 2014;12:17.

    Google Scholar 

  344. Toy R, Roy K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med. 2016;1(1):47–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Stano A, Scott EA, Dane KY, Swartz MA, Hubbell JA. Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials. 2013;34(17):4339–46.

    CAS  PubMed  Google Scholar 

  346. Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG. Targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol. 2012;509:143–63.

    CAS  PubMed  Google Scholar 

  347. Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 2017;8(1):1747.

    PubMed  PubMed Central  Google Scholar 

  348. Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, et al. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release. 2016;231:17–28.

    CAS  PubMed  Google Scholar 

  349. Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials. 2014;35(2):814–24.

    CAS  PubMed  Google Scholar 

  350. Huang Z, Zhang Z, Jiang Y, Zhang D, Chen J, Dong L, et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release. 2012;158(2):286–92.

    CAS  PubMed  Google Scholar 

  351. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  352. Kozielski KL, Rui Y, Green JJ. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv. 2016;13(10):1475–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  353. Conde J, Arnold CE, Tian F, Artzi N. RNAi nanomaterials targeting immune cells as an anti-tumor therapy: the missing link in cancer treatment? Mater Today. 2016;19(1):29–43.

    CAS  Google Scholar 

  354. Jakobczyk H, Sciortino F, Chevance S, Gauffre F, Troadec MB. Promises and limitations of nanoparticles in the era of cell therapy: example with CD19-targeting chimeric antigen receptor (CAR)-modified T cells. Int J Pharm. 2017;532(2):813–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Karami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tavakolpour, S., Karami, F. (2021). Cancer Nanomedicine: Special Focus on Cancer Immunotherapy. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-50287-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50287-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50286-7

  • Online ISBN: 978-3-030-50287-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics