Skip to main content

Allelopathic Bacteria as an Alternate Weedicide: Progress and Future Standpoints

  • Chapter
  • First Online:
Book cover Microbiota and Biofertilizers

Abstract

The ever increasing population and global issue for food security have led us to use multiple approaches to overcome the weed problems that can reduce the crop productivity up to 70%. Chemical herbicides and mechanical and other biological approaches have overcome weed problem on one hand but also destroy the environment and caused some human health impacts on the other hand. Bioherbicides are biological control agents applied in similar ways to chemical herbicides to control weeds. There is a group of rhizobacteria that is being overlooked due to its non-parasitic nature towards plants; this group of rhizobacteria is known as allelopathic bacteria. It can excrete cyanide, phytohormones, and phytotoxins that can affect the metabolism of weeds negatively. Allelopathic bacteria emerge as an alternative and more effective weed control approach which not only eradicate the weed problem but also enhances the growth of the crops. This chapter will explain the general comparison between the different weed control approaches. The importance and impacts of the bioherbicides will also be explained also by elaborating the constraints which this approach is facing in its production and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Zahir ZA, Naveed M, Kremer RJ (2018) Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Adv Agron 147:239–280. Elsevier

    Article  Google Scholar 

  • Adetunji MC, Aroyeun SO, Osho MB, Sulyok M, Krska R, Mwanza M (2019) Fungal metabolite and mycotoxins profile of cashew nut from selected locations in two African countries. Food Addit Contam Part A 36(12):1847–1859

    Article  CAS  Google Scholar 

  • Alavanja MC (2009) Introduction: pesticides use and exposure, extensive worldwide. Rev Environ Health 24(4):303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alavanja MC, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197

    Article  PubMed  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). In: Molecular microbial ecology of the soil. Springer, Dordrecht, pp 57–67

    Chapter  Google Scholar 

  • Armstrong D, Azevedo M, Mills D, Bailey B, Russell B, Groenig A, Halgren A, Banowetz G, McPhail K (2009) Germination-Arrest Factor (GAF): 3. determination that the herbicidal activity of GAF is associated with a ninhydrin-reactive compound and counteracted by selected amino acids. Biol Control 51(1):181–190

    Article  CAS  Google Scholar 

  • Arteca RN (1996) Weed control. In: Plant growth substances. Springer, Boston, pp 273–311

    Google Scholar 

  • Ashiq M, Aslam Z (2014) Weeds and weedicides. Department of Agronomy, Ayub Agricultural Research Institute, Pakistan

    Google Scholar 

  • Åström B, Gerhardson B (1988) Differential reactions of wheat and pea genotypes to root inoculation with growth-affecting rhizosphere bacteria. Plant Soil 109(2):263–269

    Article  Google Scholar 

  • Bailey KL (2004) Microbial weed control: an off-beat application of plant pathology. Can J Plant Pathol 26(3):239–244

    Article  Google Scholar 

  • Bajwa AA, Khan MJ, Bhowmik PC, Walsh M, Chauhan BS (2019) Sustainable weed management. In: Innovations in sustainable agriculture. Springer, Cham, pp 249–286

    Chapter  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46(5):0324–0328

    Article  CAS  Google Scholar 

  • Birkás M, Jolánkai M, Gyuricza C, Percze A (2004) Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res 78(2):185–196

    Article  Google Scholar 

  • Boyetchko S (1997) Efficacy of rhizobacteria as biological control agents of grassy weeds. In: Soils and crops workshop. University of Saskatchewan, Canada

    Google Scholar 

  • Boyetchko SM (1999) Innovative applications of microbial agents for biological weed control. In: Biotechnological approaches in biocontrol of plant pathogens. Springer, Boston, pp 73–97

    Chapter  Google Scholar 

  • Boyette CD, Hoagland RE (2013) Adjuvant and refined corn oil formulation effects on conidial germination, appressorial formation and virulence of the bioherbicide, Colletotrichum truncatum. Plant Pathol J Asian Netw Sci Inf 12(2):50–60

    CAS  Google Scholar 

  • Byer KN, Peng G, Wolf TM, Caldwell BC (2006) Spray retention and its effect on weed control by mycoherbicides. Biol Control 37(3):307–313

    Article  Google Scholar 

  • Caldwell CJ, Hynes RK, Boyetchko SM, Korber DR (2012) Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can J Microbiol 58(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46(2):229–260

    Article  Google Scholar 

  • Charudattan R (2005) Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target? Biol Control 35(3):183–196

    Article  Google Scholar 

  • Charudattan R, Dinoor A (2000) Biological control of weeds using plant pathogens: accomplishments and limitations. Crop Prot 19(8–10):691–695

    Article  Google Scholar 

  • Chauvel B, Guillemin J-P, Gasquez J, Gauvrit C (2012) History of chemical weeding from 1944 to 2011 in France: changes and evolution of herbicide molecules. Crop Prot 42:320–326

    Article  CAS  Google Scholar 

  • Dahiya A, Sharma R, Sindhu S, Sindhu SS (2019) Resource partitioning in the rhizosphere by inoculated Bacillus spp. towards growth stimulation of wheat and suppression of wild oat (Avena fatua L.) weed. Physiol Mol Biol Plants 25(6):1483–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daigle DJ, Cotty PJ (1991) The influence of cysteine, cysteine analogs, and other amino acids on spore germination of Alternaria species. Can J Bot 69(11):2353–2356

    Article  CAS  Google Scholar 

  • De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant-Microbe Interact 19(12):1406–1419

    Article  PubMed  CAS  Google Scholar 

  • Del-Saz NF, Florez-Sarasa I, Clemente-Moreno MJ, Mhadhbi H, Flexas J, Fernie AR, Ribas-Carbó M (2016) Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress. Plant Cell Environ 39(11):2361–2369

    Article  CAS  PubMed  Google Scholar 

  • Denslow JS, D’Antonio CM (2005) After biocontrol: assessing indirect effects of insect releases. Biol Control 35(3):307–318

    Article  Google Scholar 

  • Duke SO (2012) Why have no new herbicide modes of action appeared in recent years? Pest Manag Sci 68(4):505–512

    Article  CAS  PubMed  Google Scholar 

  • Edwards CA (1993) The impact of pesticides on the environment. In: The pesticide question. Springer, Boston, pp 13–46

    Chapter  Google Scholar 

  • Gealy DR, Gurusiddaiah S, Ogg AG (1996) Isolation and characterization of metabolites from Pseudomonas syringae-strain 3366 and their phytotoxicity against certain weed and crop species. Weed Sci 44(2):383–392

    Article  CAS  Google Scholar 

  • Ghorbani R, Leifert C, Seel W (2005) Biological control of weeds with antagonistic plant pathogens. Adv Agron 86:191–225

    Article  CAS  Google Scholar 

  • Glinski J (2018) Soil physical conditions and plant roots. CRC Press, Boca Raton

    Book  Google Scholar 

  • Goeden R (1988) A capsule history of biological control of weeds. Biocontrol News Inf 9(2):55–61

    Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Mol Biol Rev 60(3):539–574

    CAS  Google Scholar 

  • Greaves MP, Holloway PJ, Auld BA (1998) Formulation of microbial herbicides. In: Formulation of microbial biopesticides. Springer, Dordrecht, pp 203–233

    Chapter  Google Scholar 

  • Gressel J (2000) Principles of weed science, By VS Rao, Science Publishers, Enfield, NE, USA, 2000, 555 pages, paperback only. ISBN 1-57808-069-X; US $49.50. Plant Sci 2(159):313–315

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatcher P, Melander B (2003) Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res 43(5):303–322

    Article  Google Scholar 

  • Hussain M, Farooq S, Merfield C, Jabran K (2018) Mechanical weed control. In: Non-chemical weed control. Elsevier, London, pp 133–155

    Chapter  Google Scholar 

  • Hynes E (1995) Controlling weeds. Rodale Press, Emmaus

    Google Scholar 

  • Katayama A, Bhula R, Burns GR, Carazo E, Felsot A, Hamilton D, Harris C, Kim Y-H, Kleter G, Koedel W (2010) Bioavailability of xenobiotics in the soil environment. In: Reviews of environmental contamination and toxicology. Springer, New York/London, pp 1–86

    Google Scholar 

  • Kennedy A, Stubbs T (2007) Management effects on the incidence of jointed goatgrass inhibitory rhizobacteria. Biol Control 40(2):213–221

    Article  Google Scholar 

  • Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49(6):792–797

    Article  CAS  Google Scholar 

  • Kremer RJ (2006) The role of allelopathic bacteria in weed management. In: Allelochemicals: biological control of plant pathogens and diseases. Springer, Dordrecht, pp 143–155

    Chapter  Google Scholar 

  • Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43(3):182–186

    Article  CAS  PubMed  Google Scholar 

  • Kremer R, Souissi T (2013) Phytotoxicity assessment for potential biological control of leafy spurge by soilborne microorganisms. Australas Plant Pathol 42(4):441–447

    Article  Google Scholar 

  • Lakhani L (2015) How to reduce impact of pesticides in aquatic environment. Soc Issues Environ Probl 3(9):29–38

    Google Scholar 

  • Li J, Kremer RJ (2006) Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol Control 39(1):58–65

    Article  CAS  Google Scholar 

  • Li J-G, Liu Z-L, Zhang J-G, Li H-W, Zhang X-L, Zhao J-W (2006) Review of mechanical weeding technique in field at home and abroad. J Agric Mechanization Res 10:57–65

    Google Scholar 

  • Liebman M, Mohler CL, Staver CP (2001) Ecological management of agricultural weeds. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Plant, soil and microbes. Springer, Cham, pp 253–269

    Chapter  Google Scholar 

  • Mejri D, Gamalero E, Souissi T (2013) Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J Appl Microbiol 114(1):219–228

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Upadhyay RS, Nautiyal CS (2013) Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Appl Microbiol Biotechnol 97(13):5659–5668

    Article  CAS  PubMed  Google Scholar 

  • Nandi M, Selin C, Brawerman G, Fernando WD, de Kievit T (2017) Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control 108:47–54

    Article  CAS  Google Scholar 

  • Park J-M, Radhakrishnan R, Kang S-M, Lee I-J (2015) IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55(2):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phour M, Sindhu SS (2019) Bio-herbicidal effect of 5-aminoleveulinic acid producing rhizobacteria in suppression of Lathyrus aphaca weed growth. BioControl 64(2):221–232

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Alqarawi AA, Abd_Allah EF (2018) Bioherbicides: current knowledge on weed control mechanism. Ecotoxicol Environ Saf 158:131–138

    Article  CAS  PubMed  Google Scholar 

  • Rennert T, Mansfeldt T (2002) Sorption of iron–cyanide complexes on goethite in the presence of sulfate and desorption with phosphate and chloride. J Environ Qual 31(3):745–751

    CAS  PubMed  Google Scholar 

  • Saini R, Singh S (2019) Contribution of cover crops and reduced tillage Systems for Weed Management in organic vegetable production. Am J Agric Res 4:24

    Google Scholar 

  • Sarwar M (2015) The killer chemicals as controller of agriculture insect pests: the conventional insecticides. Int J Chem Biomol Sci 1(3):141–147

    Google Scholar 

  • Scavo A, Restuccia A, Abbate C, Mauromicale G (2019) Seeming field allelopathic activity of Cynara cardunculus L. reduces the soil weed seed bank. Agron Sustain Dev 39(4):41

    Article  CAS  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216(4553):1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Shirdashtzadeh M (2014) Deleterious rhizobacteria as weed biological control agent: development and constraints. Asian J Microbiol Biotechnol Environ Sci 16(3):561–574

    Google Scholar 

  • Sindhu S, Khandelwal A, Phour M, Sehrawat A (2018) Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weed management. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 331–376

    Chapter  Google Scholar 

  • Smith RG, Ryan MR, Menalled FD (2011) Direct and indirect impacts of weed management practices on soil quality. In: Soil management: building a stable base for agriculture. Madison, Soil Science Society of America, pp 275–286

    Google Scholar 

  • Sodaeizadeh H, Hosseini Z (2012) Allelopathy an environmentally friendly method for weed control. In: International conference on applied life sciences. InTechOpen, Rijeka

    Google Scholar 

  • Suzuki YS, Wang Y, Takemoto JY (1992) Syringomycin-stimulated phosphorylation of the plasma membrane H+-ATPase from red beet storage tissue. Plant Physiol 99(4):1314–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawaha A, Turk M (2003) Allelopathic effects of black mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). J Agron Crop Sci 189(5):298–303

    Article  Google Scholar 

  • Tawfik MM, Ibrahim NA, Balah MA, Abouzeid MM (2019) Evaluation of Bacteria from soil and rhizosphere as herbicidal candidates of some broadleaf weeds. Egypt J Bot 59(2):283–291

    Google Scholar 

  • Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41(3):526–538

    Article  Google Scholar 

  • Tu M, Robison RA (2013) Overcoming barriers to the prevention and management of alien plant invasions in protected areas: a practical approach. In: Plant invasions in protected areas. Springer, Dordrecht, pp 529–547

    Chapter  Google Scholar 

  • Upadhyaya MK, Blackshaw RE (2007) Non-chemical weed management: principles, concepts and technology. CABI, Wallingford

    Book  Google Scholar 

  • Van der Weide R, Bleeker P, Achten V, Lotz L, Fogelberg F, Melander B (2008) Innovation in mechanical weed control in crop rows. Weed Res 48(3):215–224

    Article  Google Scholar 

  • Waage J, Greathead D (1988) Biological control: challenges and opportunities. Philos Trans R Soc Lond Ser B Biol Sci 318(1189):111–128

    Google Scholar 

  • Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134(1):320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weingart H, Ullrich H, Geider K, Völksch B (2001) The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology 91(5):511–518

    Article  CAS  PubMed  Google Scholar 

  • Woltz S (1978) Nonparasitic plant pathogens. Annu Rev Phytopathol 16(1):403–430

    Article  Google Scholar 

  • Yaduraju N, Mishra J (2004) Soil solarization. In: Weed biology and management. Springer, Berlin, pp 345–362

    Chapter  Google Scholar 

  • Zhang X, Chen Y (2017) Soil disturbance and cutting forces of four different sweeps for mechanical weeding. Soil Tillage Res 168:167–175

    Article  Google Scholar 

  • Zimdahl R (1999) Fundamentals of weed science. Academic, New York

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge the time given by Mr. Waqas Mohy Ud Din for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, M.M., Farooqi, Z.U.R. (2021). Allelopathic Bacteria as an Alternate Weedicide: Progress and Future Standpoints. In: Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A. (eds) Microbiota and Biofertilizers. Springer, Cham. https://doi.org/10.1007/978-3-030-48771-3_13

Download citation

Publish with us

Policies and ethics