Skip to main content

Role of Liver X Receptor in Cardiovascular Diseases

  • Chapter
  • First Online:
Biochemistry of Cardiovascular Dysfunction in Obesity

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 20))

  • 418 Accesses

Abstract

Cardiovascular diseases are the leading cause of death worldwide including various complications like atherosclerosis, myocardial infarction, diabetic cardiomyopathy, cardiac hypertrophy and cardiac fibrosis. Looking into the limitations and side effects of interventional and non-interventional treatment strategies, liver X receptors (LXRs) can be the novel targets as treatment strategy for cardiac complication. Nuclear receptors like liver X receptors (LXRs) are known to regulate various physiological functions like cholesterol and carbohydrate metabolism, energy expenditure and inflammation. Cholesterol derivatives, oxysterols were the first endogenous ligand found to activate LXRs whereas T0901317 and GW3965 were the potential synthetic LXR agonist reported. Various evidences have suggested that LXR may exert their beneficial role in heart disease. We reviewed recent data that shows a direct role of LXR agonist in various cardiovascular diseases like atherosclerosis, myocardial infarction, diabetic cardiomyopathy, cardiac hypertrophy, fibrosis. These accumulating evidences support that LXRs may represent a novel potential therapeutic target for various cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 25 Nov 2019

  2. https://healthmetrics.heart.org/wp-content/uploads/2019/02/At-A-Glance-Heart-Disease-and-Stroke-Statistics-–-2019.pdf. Accessed 27 Nov 2019

  3. https://www.escardio.org/static_file/Escardio/About%20the%20ESC/Annual-Reports/ESC-Annual-Report-2019.pdf. Accessed 1 Dec 2019

  4. Huffman MD, Bhatnagar D (2012) Novel treatments for cardiovascular disease prevention. Cardiovasc Ther 30:257–263

    Article  CAS  PubMed  Google Scholar 

  5. https://www.fda.gov/consumers/free-publications-women/high-blood-pressure-medicines-help-you. Accessed 1 Dec 2019

  6. Golomb BA, Evans MA (2008) Statin adverse effects. Am J Cardiovasc Drugs 8:373–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinberger J (2005) Adverse effects and drug interactions of antithrombotic agents used in prevention of ischaemic stroke. Drugs 65:461–471

    Article  CAS  PubMed  Google Scholar 

  8. https://www.nhlbi.nih.gov/health-topics/heart-surgery. Accessed 1 Dec 2019

  9. Raghunathan S, Patel BM (2013) Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundam Clin Pharmacol 27:1–20

    Article  CAS  PubMed  Google Scholar 

  10. Rawal H, Patel BM (2018) Opioids in cardiovascular disease: therapeutic options. J Cardiovas Pharmacol Ther 23:279–291

    Article  CAS  Google Scholar 

  11. Patel BM, Mehta AA (2012) Aldosterone and angiotensin: role in diabetes and cardiovascular diseases. Eur J Pharmacol 697:1–2

    Article  CAS  PubMed  Google Scholar 

  12. Huang P, Chandra V, Rastinejad F (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 72:247–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Apfel R, Benbrook D, Lernhardt E, Ortiz MA, Salbert G, Pfahl M (1994) A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol 14:7025–7035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9:1033–1045

    Article  CAS  PubMed  Google Scholar 

  15. Janowski BA, Willy PJ, Devi TR et al (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383:728–731

    Article  CAS  PubMed  Google Scholar 

  16. Kick EK, Busch BB, Martin R, Stevens WC, Bollu V et al (2016) Discovery of Highly Potent Liver X Receptor β Agonists. ACS Medi Chem Lett 7:1207–1212

    Article  CAS  Google Scholar 

  17. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM et al (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev 14:2819–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wójcicka G, Jamroz-Wiśniewska A, Horoszewicz K, Bełtowski J (2007) Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw (Online) 61:736–759

    Google Scholar 

  19. Zhang Z, Chen H, Chen Z, Ding P, Ju Y et al (2019) Identify liver X receptor β modulator building blocks by developing a fluorescence polarization-based competition assay. Eur J Med Chem 178:458–467

    Article  CAS  PubMed  Google Scholar 

  20. Jakobsson T, Treuter E, Gustafsson JÅ, Steffensen KR (2012) Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 33:394–404

    Article  CAS  PubMed  Google Scholar 

  21. Tontonoz P, Mangelsdorf DJ (2003) Liver X receptor signaling pathways in cardiovascular disease. Mol Endocrinol 17:985–993

    Article  CAS  PubMed  Google Scholar 

  22. Ju X, Huang P, Chen M, Wang Q (2017) Liver X receptors as potential targets for cancer therapeutics. Oncol Lett 14:7676–7680

    PubMed  PubMed Central  Google Scholar 

  23. Steffensen KR, Jakobsson T, Gustafsson JÅ (2013) Targeting liver X receptors in inflammation. Expert Opin Ther Targ 17:977–990

    Article  CAS  Google Scholar 

  24. Sandoval-Hernandez AG, Buitrago L, Moreno H, Cardona-Gómez GP, Arboleda G (2015) Role of liver X receptor in AD pathophysiology. PLoS ONE 10:e0145467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ouedraogo ZG, Fouache A, Trousson A, Baron S, Lobaccaro JM (2017) Role of the liver X receptors in skin physiology: putative pharmacological targets in human diseases. Chem Phys Lipid 207:59–68

    Article  CAS  Google Scholar 

  26. Cao G, Liang Y, Broderick CL, Oldham BA, Beyer TP et al (2003) Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 278:1131–1136

    Article  CAS  PubMed  Google Scholar 

  27. Tobin KA, Ulven SM, Schuster GU, Steineger HH, Andresen SM et al (2002) Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J Biol Chem 277:10691–10697

    Article  CAS  PubMed  Google Scholar 

  28. He Q, Pu J, Yuan A, Lau WB, Gao E et al (2014) Activation of liver-X-receptor α but not liver-X-receptor β protects against myocardial ischemia/reperfusion injury. Circul Heart Fai 7:1032–1041

    Google Scholar 

  29. Ni M, Zhang B, Zhao J, Feng Q, Peng J et al (2019) Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother 113:108778

    Article  CAS  PubMed  Google Scholar 

  30. Färnegårdh M, Bonn T, Sun S, Ljunggren J, Ahola H et al (2003) The three-dimensional structure of the liver X receptor β reveals a flexible ligand-binding pocket that can accommodate fundamentally different ligands. J Biol Chem 278:38821–38828

    Article  PubMed  CAS  Google Scholar 

  31. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Investig 116:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steffensen KR, Gustafsson JÅ (2004) Putative metabolic effects of the liver X receptor (LXR). Diabetes 53:S36–S42

    Article  CAS  PubMed  Google Scholar 

  34. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93:693–704

    Article  CAS  PubMed  Google Scholar 

  35. Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U et al (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice. J Clin Investig 107:565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yasuda T, Grillot D, Billheimer JT, Briand F, Delerive P et al (2010) Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 30:781–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delvecchio CJ, Bilan P, Nair P, Capone JP (2008) LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1. Am J Physiol-Lung Cell Mole Physiol 295:L949–L957

    Article  CAS  Google Scholar 

  39. Stenson BM, Ryden M, Steffensen KR, Wåhlén K, Pettersson AT et al (2009) Activation of liver X receptor regulates substrate oxidation in white adipocytes. Endocrinology 150:4104–4113

    Article  CAS  PubMed  Google Scholar 

  40. Gabbi C, Warner M, Gustafsson JA (2009) Minireview: liver X receptor β: emerging roles in physiology and diseases. Mol Endocrinol 23:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korach-André M, Archer A, Barros RP et al (2011) Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc Natl Acad Sci 108:403–408

    Article  PubMed  Google Scholar 

  42. Wang YY, Dahle MK, Steffensen KR et al (2009) Liver X receptor agonist GW3965 dose-dependently regulates lps-mediated liver injury and modulates posttranscriptional TNF-α production and p38 mitogen-activated protein kinase activation in liver macrophages. Shock 32:548–553

    Article  PubMed  CAS  Google Scholar 

  43. Ogawa S, Lozach J, Benner C et al (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122:707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schulman IG (2017) Liver X receptors link lipid metabolism and inflammation. FEBS Lett 591:2978–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. https://www.who.int/gho/ncd/risk_factors/cholesterol_text/en/. Accessed 1 Dec 2019

  46. Jamkhande PG, Chandak PG, Dhawale SC et al (2014) Therapeutic approaches to drug targets in atherosclerosis. Saudi Pharma J 22:179–190

    Article  Google Scholar 

  47. Pott J, Schlegel V, Teren A et al (2018) Genetic regulation of PCSK9 (proprotein convertase subtilisin/kexin type 9) plasma levels and its impact on atherosclerotic vascular disease phenotypes. Circul Geno Precis Medi 11:e001992

    Google Scholar 

  48. Jackson AO, Regine MA, Subrata C, Long S (2018) Molecular mechanisms and genetic regulation in atherosclerosis. IJC Heart Vascul 21:36–44

    Article  Google Scholar 

  49. Terasaka N, Hiroshima A, Koieyama T et al (2003) T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett 536:6–11

    Article  CAS  PubMed  Google Scholar 

  50. Vucic E, Calcagno C, Dickson SD et al (2012) Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. JACC Cardiovasc Imag 5:819–828

    Google Scholar 

  51. Cha JY, Repa JJ (2007) The liver X receptor (LXR) and hepatic lipogenesis the carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 282:743–751

    Article  CAS  PubMed  Google Scholar 

  52. Gungor B, Vanharanta L, Hölttä-Vuori M et al (2019) HSP70 induces liver X receptor pathway activation and cholesterol reduction in vitro and in vivo. Molecul Metabol 28:135–143

    Article  CAS  Google Scholar 

  53. Li SS, Cao H, Shen DZ et al (2019) Effect of quercetin on atherosclerosis based on expressions of ABCA1, LXR-α and PCSK9 in ApoE-/-mice. Chin J Integrat Med 30:1–8

    Google Scholar 

  54. Levin N, Bischoff ED, Daige CL et al (2005) Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 25:135–142

    Article  CAS  PubMed  Google Scholar 

  55. Verschuren L, de Vries-van der Weij J, Zadelaar S, et al (2009) LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE* 3Leiden mice: time course and mechanisms. J Lipid Res 50:301–311

    Google Scholar 

  56. https://www.who.int/cardiovascular_diseases/priorities/secondary_prevention/country/en/index1.html. Accessed 1 Dec 2019

  57. Lu L, Liu M, Sun R et al (2015) Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 72:865–867

    Article  CAS  PubMed  Google Scholar 

  58. Rayabarapu N, Patel BM (2014) Beneficial role of tamoxifen in isoproterenol-induced myocardial infarction. Can J Physiol Pharmacol 92:849–857

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Wang H, Li J (2016) Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clini Medi Insights Cardiol 10:79–84

    CAS  Google Scholar 

  60. Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE et al (2018) Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 186:73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Szegezdi EV, Fitzgerald UN, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194

    Article  CAS  PubMed  Google Scholar 

  62. Li P, Zhou L, Zhao T et al (2017) Caspase-9: structure, mechanisms and clinical application. Oncotarget 8:23996–24008

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maciejak A, Kostarska-Srokosz E, Gierlak W, Dluzniewski M, Kuch M, Marchel M, Opolski G, Kiliszek M, Matlak K, Dobrzycki S, Lukasik A (2018) Circulating miR-30a-5p as a prognostic biomarker of left ventricular dysfunction after acute myocardial infarction. Scienti Rep 8:9883

    Article  CAS  Google Scholar 

  64. Lei P, Baysa A, Nebb HI et al (2013) Activation of Liver X receptors in the heart leads to accumulation of intracellular lipids and attenuation of ischemia–reperfusion injury. Basic Res Cardiol 108:323

    Article  PubMed  CAS  Google Scholar 

  65. Wang Y, Li C, Cheng K et al (2014) Activation of liver X receptor improves viability of adipose-derived mesenchymal stem cells to attenuate myocardial ischemia injury through TLR4/NF-κB and Keap-1/Nrf-2 signaling pathways. Antioxid Redox Signal 21:2543–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ji Q, Zhao Y, Yuan A et al (2017) Deficiency of liver-X-receptor-α reduces glucose uptake and worsens post-myocardial infarction remodeling. Biochem Biophys Res Commun 488:489–495

    Article  CAS  PubMed  Google Scholar 

  67. Gulsin GS, Athithan L, McCann GP (2019) Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Thera Adv Endocrinol Metabol 10:2042018819834869

    CAS  Google Scholar 

  68. Patel BM, Mehta AA (2013) Choice of anti-hypertensive agents in diabetic subjects. Diabetes Vascu Dis Res 10:385–396

    Article  CAS  Google Scholar 

  69. Goyal BR, Mehta AA (2013) Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 32:571–590

    Article  CAS  PubMed  Google Scholar 

  70. Patel BM (2019) Histone deacetylase and oxidative stress: role in diabetic cardiomyopathy. In: Chakraborti S, Dhallan N, Ganguly N, Dikshit M (eds) Oxidative stress in heart disease. Springer, Singapore, pp 413–425

    Chapter  Google Scholar 

  71. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patel BM, Goyal RK (2019) Liver and insulin resistance: new wine in old bottle!!! Eur J Pharmacol 862:172657

    Article  CAS  PubMed  Google Scholar 

  73. Pan J, Guleria RS, Zhu S, Baker KM (2014) Molecular mechanisms of retinoid receptors in diabetes-induced cardiac remodeling. J Clini Medi 3:566–594

    Article  CAS  Google Scholar 

  74. Goyal BR, Mesariya P, Goyal RK, Mehta AA (2008) Effect of telmisartan on cardiovascular complications associated with streptozotocin diabetic rats. Mol Cell Biol 1;314(1–2):123–131

    Google Scholar 

  75. Goyal BR, Solanki N, Goyal RK, Mehta AA (2009) Investigation into the cardiac effects of spironolactone in the experimental model of type 1 diabetes. J Cardiovasc Pharmacol 54:502–509

    Google Scholar 

  76. Goyal BR, Parmar K, Goyal RK, Mehta AA (2011) Beneficial role of telmisartan on cardiovascular complications associated with STZ-induced type 2 diabetes in rats. Pharmacol Rep 63:956–966

    Article  CAS  PubMed  Google Scholar 

  77. Patel BM, Kakadiya J, Goyal RK, Mehta AA (2013) Effect of spironolactone on cardiovascular complications associated with type-2 diabetes in rats. Exp Clin Endocrinol Diabetes 121:441–447

    Article  CAS  PubMed  Google Scholar 

  78. Goyal BR, Patel MM, Bhadada SV (2011) Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril on diabetes induced cardiovascular complications in type 1 diabetes in rats. Int J Diabetes Metabol 19:11–18

    Google Scholar 

  79. Patel BM, Bhadada SV (2014) Type 2 diabetes-induced cardiovascular complications: comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril. Clin Exp Hypertens 36:340–347

    Article  CAS  PubMed  Google Scholar 

  80. Raghunathan S, Tank P, Bhadada S, Patel B (2014) Evaluation of buspirone on streptozotocin induced type 1 diabetes and its associated complications. BioMed Res Int 2014: 2014.

    Google Scholar 

  81. Patel BM, Raghunathan S, Porwal U (2014) Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. Eur J Pharmacol 728:128–134

    Article  CAS  PubMed  Google Scholar 

  82. Rabadiya S, Bhadada S, Dudhrejiya A, Vaishnav D, Patel B (2018) Magnesium valproate ameliorates type 1 diabetes and cardiomyopathy in diabetic rats through estrogen receptors. Biomed Pharmacother 97:919–927

    Article  CAS  PubMed  Google Scholar 

  83. Ghosh N, Katare R (2018) Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol 17:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hou N, Mai Y, Qiu X et al (2019) Carvacrol attenuates diabetic cardiomyopathy by modulating the PI3K/AKT/GLUT4 pathway in diabetic mice. Front Pharmacol 10:998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. He Q, Pu J, Yuan A et al (2014) Liver X receptor agonist treatment attenuates cardiac dysfunction in type 2 diabetic db/db mice. Cardiovasc Diabetol 13:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Harasiuk D, Baranowski M, Zabielski P et al (2016) Liver x receptor agonist to901317 prevents diacylglycerols accumulation in the heart of streptozotocin-diabetic rats. Cell Physiol Biochem 39:350–359

    Article  CAS  PubMed  Google Scholar 

  87. Cheng Y, Zhang D, Zhu M et al (2017) Liver X receptor α is targeted by microRNA-1 to inhibit cardiomyocyte apoptosis through a ROS-mediated mitochondrial pathway. Biochem Cell Biol 96:11–18

    Article  PubMed  CAS  Google Scholar 

  88. Cheng Y, Zhao W, Zhang X et al (2018) Downregulation of microRNA-1 attenuates glucose-induced apoptosis by regulating the liver X receptor α in cardiomyocytes. Experi Thera Medi 16:1814–1824

    Google Scholar 

  89. He Q, Wang F, Fan Y et al (2018) Differential effects of and mechanisms underlying the protection of cardiomyocytes by liver-X-receptor subtypes against high glucose stress-induced injury. Biochem Biophys Res Commun 503:1372

    Article  CAS  PubMed  Google Scholar 

  90. Semsarian C, Ingles J, Maron MS, Maron BJ (2015) New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol 65:1249–1254

    Article  PubMed  Google Scholar 

  91. Cramariuc D, Gerdts E (2016) Epidemiology of left ventricular hypertrophy in hypertension: implications for the clinic. Expert Rev Cardiovasc Ther 14:915–926

    Article  CAS  PubMed  Google Scholar 

  92. Samak M, Fatullayev J, Sabashnikov A et al (2016) Cardiac hypertrophy: an introduction to molecular and cellular basis. Medi Sci Monitor Basic Res 22:75

    Article  Google Scholar 

  93. Ma Z, Deng C, Hu W et al (2017) Liver X receptors and their agonists: targeting for cholesterol homeostasis and cardiovascular diseases. Curr Issues Mol Biol 22:41–64

    Article  PubMed  Google Scholar 

  94. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262

    Article  CAS  PubMed  Google Scholar 

  95. Patel BM, Desai VJ (2014) Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacol Rep 66:264–272

    Article  CAS  PubMed  Google Scholar 

  96. Raghunathan S, Goyal RK, Patel BM (2016) Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Can J Physiol Pharmacol 95:260–267

    Article  PubMed  CAS  Google Scholar 

  97. Patel BM (2018) Sodium butyrate controls cardiac hypertrophy in experimental models of rats. Cardiovasc Toxicol 18:1–8

    Article  PubMed  CAS  Google Scholar 

  98. Sharma B, Chaube U, Patel BM (2019) Beneficial effect of Silymarin in pressure overload induced experimental cardiac hypertrophy. Cardiovasc Toxicol 19:23–35

    Article  CAS  PubMed  Google Scholar 

  99. Wu S, Yin R, Ernest R et al (2009) Liver X receptors are negative regulators of cardiac hypertrophy via suppressing NF-κB signalling. Cardiovasc Res 84:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuipers I, Li J, Vreeswijk-Baudoin I et al (2010) Activation of liver X receptors with T0901317 attenuates cardiac hypertrophy in vivo. Eur J Heart Fail 12:1042–1050

    Article  CAS  PubMed  Google Scholar 

  101. Cannon MV, Yu H, Candido WM et al (2015) The liver X receptor agonist AZ876 protects against pathological cardiac hypertrophy and fibrosis without lipogenic side effects. Eur J Heart Fail 17:273–282

    Article  CAS  PubMed  Google Scholar 

  102. Cannon MV, Silljé HH, Sijbesma JW, Khan MA, Steffensen KR, van Gilst WH, de Boer RA (2016) LXRα improves myocardial glucose tolerance and reduces cardiac hypertrophy in a mouse model of obesity-induced type 2 diabetes. Diabetologia 59:634–643

    Article  CAS  PubMed  Google Scholar 

  103. Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ (2018) Cardiac fibrosis: new insights into the pathogenesis. Int J Biolog Sci 14:1645

    Article  CAS  Google Scholar 

  104. Bashey RI, Martinez-Hernandez A, Jimenez SA (1992) Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circul Res 70:1006–1017

    Google Scholar 

  105. Hinderer S, Schenke-Layland K (2019) Cardiac fibrosis–a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 146:77–82

    Article  CAS  PubMed  Google Scholar 

  106. Tian J, An X, Niu L (2017) Myocardial fibrosis in congenital and pediatric heart disease. Experi Ther Medi 13:1660–1664

    Article  CAS  Google Scholar 

  107. Van Rooij E, Sutherland LB, Thatcher JE et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci 105:13027–13032

    Article  PubMed  PubMed Central  Google Scholar 

  108. Castrillo A, Joseph SB, Marathe C et al (2003) Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 278:10443–10449

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramesh K. Goyal or Bhoomika M. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masi, T., Goyal, R.K., Patel, B.M. (2020). Role of Liver X Receptor in Cardiovascular Diseases. In: Tappia, P.S., Bhullar, S.K., Dhalla, N.S. (eds) Biochemistry of Cardiovascular Dysfunction in Obesity. Advances in Biochemistry in Health and Disease, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-47336-5_4

Download citation

Publish with us

Policies and ethics