Skip to main content

Bicuspid Aortic Valve

  • Chapter
  • First Online:
  • 560 Accesses

Abstract

An aortic valve typically consists of three leaflets: two are named after their orientation relative to the left and right coronary artery, while the third is called the non-coronary cusp. In 0.5–2% of the general population, the aortic valve comprises only two leaflets, which is termed a bicuspid aortic valve (BAV). BAV is the most prevalent congenital heart defect and is believed to result from abnormal embryological fusion of two adjacent cusps or abnormal septation of one larger primordial cusp, due to defective endothelial-to-mesenchymal transition in the outflow tract or abnormal activity of cardiac neural crest cells. Although intrinsically asymptomatic, it associates with severe cardiovascular complications such as aortic stenosis, aortic regurgitation, and ascending aortic dilatation. Also aortic coarctation is found more often in BAV patients compared to individuals with a normal aortic valve. In the past, these manifestations accounted for a higher mortality and morbidity than all other congenital heart defects combined. As to significant advances in perioperative management, however, survival rates between BAV patients with minimal valve dysfunction and tricuspid aortic valve (TAV) individuals have now almost equaled. Further improvement of the existing interventions as well as discovery of novel therapeutic targets and accurate predictive biomarkers for BAV-related complications is still warranted though. Therefore, the condition’s pathomechanisms are currently being extensively studied. Although these investigations have been insightful to some extent, knowledge gaps have increasingly been exposed, highlighting the importance of future instigation of additional experiments digging into the etiology of BAV. In this chapter, a comprehensive overview on the clinical and yet unraveled molecular characteristics of BAV will be provided, as well as a reflection on the factors underlying its current etiological inscrutability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Braverman AC, Guven H, Beardslee MA, Makan M, Kates AM, Moon MR. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30(9):470–522.

    PubMed  Google Scholar 

  2. Galian-Gay L, Carro Hevia A, Teixido-Tura G, Rodriguez Palomares J, Gutierrez-Moreno L, Maldonado G, et al. Familial clustering of bicuspid aortic valve and its relationship with aortic dilation in first-degree relatives. Heart. 2018;105(8):603–8.

    PubMed  Google Scholar 

  3. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.

    PubMed  Google Scholar 

  4. Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83(1):81–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, Jamorski MT, et al. Outcomes in adults with bicuspid aortic valves. JAMA. 2008;300(11):1317–25.

    CAS  PubMed  Google Scholar 

  6. Michelena HI, Desjardins VA, Avierinos JF, Russo A, Nkomo VT, Sundt TM, et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation. 2008;117(21):2776–84.

    PubMed  PubMed Central  Google Scholar 

  7. Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226–33.

    PubMed  Google Scholar 

  8. Fernandez B, Duran AC, Fernandez-Gallego T, Fernandez MC, Such M, Arque JM, et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol. 2009;54(24):2312–8.

    PubMed  Google Scholar 

  9. Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA. 2011;306(10):1104–12.

    CAS  PubMed  Google Scholar 

  10. Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.

    PubMed  Google Scholar 

  11. Kong WK, Delgado V, Poh KK, Regeer MV, Ng AC, McCormack L, et al. Prognostic implications of raphe in bicuspid aortic valve anatomy. JAMA Cardiol. 2017;2(3):285–92.

    PubMed  Google Scholar 

  12. Ng ACT, Delgado V, Kong WKF, Bax JJ. Lessons from an international bicuspid aortic valve disease registry: the raphe and beyond. Heart Lung Circ. 2018;27(7):782–4.

    PubMed  Google Scholar 

  13. Ward RM, Marsh JM, Gossett JM, Rettiganti MR, Collins RT 2nd. Impact of bicuspid aortic valve morphology on aortic valve disease and aortic dilation in pediatric patients. Pediatr Cardiol. 2018;39(3):509–17.

    PubMed  Google Scholar 

  14. Kang JW, Song HG, Yang DH, Baek S, Kim DH, Song JM, et al. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging. 2013;6(2):150–61.

    PubMed  Google Scholar 

  15. Kim JS, Ko SM, Chee HK, Shin JK, Song MG, Shin HJ. Relationship between bicuspid aortic valve phenotype, valvular function, and ascending aortic dimensions. J Heart Valve Dis. 2014;23(4):406–13.

    PubMed  Google Scholar 

  16. Kong WK, Regeer MV, Ng AC, McCormack L, Poh KK, Yeo TC, et al. Sex differences in phenotypes of bicuspid aortic valve and aortopathy: insights from a large multicenter, international registry. Circ Cardiovasc Imaging. 2017;10(3):e005155. https://doi.org/10.1161/CIRCIMAGING.116.005155.

    Article  PubMed  Google Scholar 

  17. Andrei AC, Yadlapati A, Malaisrie SC, Puthumana JJ, Li Z, Rigolin VH, et al. Comparison of outcomes and presentation in men-versus-women with bicuspid aortic valves undergoing aortic valve replacement. Am J Cardiol. 2015;116(2):250–5.

    PubMed  Google Scholar 

  18. Roman MJ, Pugh NL, Devereux RB, Eagle KA, Holmes K, LeMaire SA, et al. Aortic dilatation associated with bicuspid aortic valve: relation to sex, hemodynamics, and valve morphology (the National Heart Lung and Blood Institute-sponsored national registry of genetically triggered thoracic aortic aneurysms and cardiovascular conditions). Am J Cardiol. 2017;120(7):1171–5.

    PubMed  PubMed Central  Google Scholar 

  19. Braverman AC. Aortic involvement in patients with a bicuspid aortic valve. Heart. 2011;97(6):506–13.

    PubMed  Google Scholar 

  20. Edwards WD, Leaf DS, Edwards JE. Dissecting aortic aneurysm associated with congenital bicuspid aortic valve. Circulation. 1978;57(5):1022–5.

    CAS  PubMed  Google Scholar 

  21. Michelena HI, Prakash SK, Della Corte A, Bissell MM, Anavekar N, Mathieu P, et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the international bicuspid aortic valve consortium (BAVCon). Circulation. 2014;129(25):2691–704.

    PubMed  PubMed Central  Google Scholar 

  22. Nanda NC, Gramiak R, Manning J, Mahoney EB, Lipchik EO, DeWeese JA. Echocardiographic recognition of the congenital bicuspid aortic valve. Circulation. 1974;49(5):870–5.

    CAS  PubMed  Google Scholar 

  23. Freeman RV, Otto CM. Bicuspid aortic valve and aortopathy: see the first, then look at the second. JACC Cardiovasc Imaging. 2013;6(2):162–4.

    PubMed  Google Scholar 

  24. Yousry M, Rickenlund A, Petrini J, Jenner J, Liska J, Eriksson P, et al. Aortic valve type and calcification as assessed by transthoracic and transoesophageal echocardiography. Clin Physiol Funct Imaging. 2015;35(4):306–13.

    PubMed  Google Scholar 

  25. Takeda H, Muro T, Saito T, Hyodo E, Ehara S, Hanatani A, et al. Diagnostic accuracy of transthoracic and transesophageal echocardiography for the diagnosis of bicuspid aortic valve: comparison with operative findings. Osaka City Med J. 2013;59(2):69–78.

    PubMed  Google Scholar 

  26. Cote G, Denault A. Transesophageal echocardiography-related complications. Can J Anaesth. 2008;55(9):622–47.

    PubMed  Google Scholar 

  27. Joziasse IC, Vink A, Cramer MJ, van Oosterhout MF, van Herwerden LA, Heijmen R, et al. Bicuspid stenotic aortic valves: clinical characteristics and morphological assessment using MRI and echocardiography. Neth Hear J. 2011;19(3):119–25.

    CAS  Google Scholar 

  28. van der Wall EE. Bicuspid aortic valve; optimal diagnosis and latest interventional treatment. Neth Hear J. 2015;23(3):149–50.

    Google Scholar 

  29. Mordi I, Tzemos N. Bicuspid aortic valve disease: a comprehensive review. Cardiol Res Pract. 2012;2012:196037.

    PubMed  PubMed Central  Google Scholar 

  30. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the Management of Patients with Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation. 2014;129(23):2440–92.

    PubMed  Google Scholar 

  31. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.

    PubMed  Google Scholar 

  32. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739–91.

    PubMed  Google Scholar 

  33. Borger MA, Fedak PWM, Stephens EH, Gleason TG, Girdauskas E, Ikonomidis JS, et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: executive summary. J Thorac Cardiovasc Surg. 2018;156(2):473–80.

    PubMed  PubMed Central  Google Scholar 

  34. Ben-Shachar S, Ou Z, Shaw CA, Belmont JW, Patel MS, Hummel M, et al. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet. 2008;82(1):214–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Basu R, Hazra S, Shanks M, Paterson DI, Oudit GY. Novel mutation in exon 14 of the sarcomere gene MYH7 in familial left ventricular noncompaction with bicuspid aortic valve. Circ Heart Fail. 2014;7(6):1059–62.

    PubMed  Google Scholar 

  36. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Karp N, Grosse-Wortmann L, Bowdin S. Severe aortic stenosis, bicuspid aortic valve and atrial septal defect in a child with Joubert Syndrome and Related Disorders (JSRD) - a case report and review of congenital heart defects reported in the human ciliopathies. Eur J Med Genet. 2012;55(11):605–10.

    PubMed  Google Scholar 

  38. Baasanjav S, Al-Gazali L, Hashiguchi T, Mizumoto S, Fischer B, Horn D, et al. Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet. 2011;89(1):15–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.

    CAS  PubMed  Google Scholar 

  40. Clementi M, Notari L, Borghi A, Tenconi R. Familial congenital bicuspid aortic valve: a disorder of uncertain inheritance. Am J Med Genet. 1996;62(4):336–8.

    CAS  PubMed  Google Scholar 

  41. Ellison JW, Yagubyan M, Majumdar R, Sarkar G, Bolander ME, Atkinson EJ, et al. Evidence of genetic locus heterogeneity for familial bicuspid aortic valve. J Surg Res. 2007;142(1):28–31.

    CAS  PubMed  Google Scholar 

  42. Hinton RB. Bicuspid aortic valve and thoracic aortic aneurysm: three patient populations, two disease phenotypes, and one shared genotype. Cardiol Res Pract. 2012;2012:926975.

    PubMed  PubMed Central  Google Scholar 

  43. Loscalzo ML, Goh DL, Loeys B, Kent KC, Spevak PJ, Dietz HC. Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet A. 2007;143A(17):1960–7.

    CAS  PubMed  Google Scholar 

  44. Jain R, Engleka KA, Rentschler SL, Manderfield LJ, Li L, Yuan L, et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J Clin Invest. 2011;121(1):422–30.

    CAS  PubMed  Google Scholar 

  45. Rossi A, van der Linde D, Yap SC, Lapinskas T, Kirschbaum S, Springeling T, et al. Ascending aorta dilatation in patients with bicuspid aortic valve stenosis: a prospective CMR study. Eur Radiol. 2013;23(3):642–9.

    PubMed  Google Scholar 

  46. Martin LJ, Ramachandran V, Cripe LH, Hinton RB, Andelfinger G, Tabangin M, et al. Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations. Hum Genet. 2007;121(2):275–84.

    CAS  PubMed  Google Scholar 

  47. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.

    CAS  PubMed  Google Scholar 

  48. Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016;18(9):914–23.

    CAS  PubMed  Google Scholar 

  49. Kent KC, Crenshaw ML, Goh DL, Dietz HC. Genotype-phenotype correlation in patients with bicuspid aortic valve and aneurysm. J Thorac Cardiovasc Surg. 2013;146(1):158–65 e1.

    CAS  PubMed  Google Scholar 

  50. Foffa I, Ait Ali L, Panesi P, Mariani M, Festa P, Botto N, et al. Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med Genet. 2013;14:44.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet. 2008;17(18):2886–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011;138(17):3593–612.

    CAS  PubMed  Google Scholar 

  53. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    CAS  PubMed  Google Scholar 

  54. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9(1):49–61.

    CAS  PubMed  Google Scholar 

  55. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18(1):99–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kostina AS, Uspensky VЕ, Irtyuga OB, Ignatieva EV, Freylikhman O, Gavriliuk ND, et al. Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. Biochim Biophys Acta. 2016;1862(4):733–40.

    CAS  PubMed  Google Scholar 

  57. MacGrogan D, D'Amato G, Travisano S, Martinez-Poveda B, de Luxan G, Del Monte-Nieto G, et al. Sequential ligand-dependent notch signaling activation regulates valve primordium formation and morphogenesis. Circ Res. 2016;118(10):1480–97.

    CAS  PubMed  Google Scholar 

  58. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    CAS  PubMed  Google Scholar 

  59. Kaden JJ, Bickelhaupt S, Grobholz R, Vahl CF, Hagl S, Brueckmann M, et al. Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis. 2004;13(4):560–6.

    PubMed  Google Scholar 

  60. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.

    PubMed  Google Scholar 

  61. Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, et al. Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One. 2011;6(11):e27743.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nigam V, Srivastava D. Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol. 2009;47(6):828–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiao J, Tian W, Qiu P, Norton EL, Wang MM, Chen YE, et al. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: implications for bicuspid aortic valve-related aortopathy. J Thorac Cardiovasc Surg. 2018;156(2):515–22 e1.

    CAS  PubMed  Google Scholar 

  64. Koenig SN, La Haye S, Feller JD, Rowland P, Hor KN, Trask AJ, et al. Notch1 haploinsufficiency causes ascending aortic aneurysms in mice. JCI Insight. 2017;2(21):e91353. https://doi.org/10.1172/jci.insight.91353.

    Article  PubMed Central  Google Scholar 

  65. Tan HL, Glen E, Topf A, Hall D, O'Sullivan JJ, Sneddon L, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat. 2012;33(4):720–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, et al. Candidate gene Resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor. Front Physiol. 2017;8:400.

    PubMed  PubMed Central  Google Scholar 

  67. Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol. 2001;155(6):1017–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wylie LA, Mouillesseaux KP, Chong DC, Bautch VL. Developmental SMAD6 loss leads to blood vessel hemorrhage and disrupted endothelial cell junctions. Dev Biol. 2018;442(2):199–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, et al. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000;24(2):171–4.

    CAS  PubMed  Google Scholar 

  70. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443–7.

    CAS  PubMed  Google Scholar 

  72. Li RG, Xu YJ, Wang J, Liu XY, Yuan F, Huang RT, et al. GATA4 loss-of-function mutation and the congenitally bicuspid aortic valve. Am J Cardiol. 2018;121(4):469–74.

    CAS  PubMed  Google Scholar 

  73. Yang B, Zhou W, Jiao J, Nielsen JB, Mathis MR, Heydarpour M, et al. Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve. Nat Commun. 2017;8:15481.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rivera-Feliciano J, Lee KH, Kong SW, Rajagopal S, Ma Q, Springer Z, et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development. 2006;133(18):3607–18.

    CAS  PubMed  Google Scholar 

  75. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11(8):1061–72.

    CAS  PubMed  Google Scholar 

  76. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11(8):1048–60.

    CAS  PubMed  Google Scholar 

  77. Laforest B, Andelfinger G, Nemer M. Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest. 2011;121(7):2876–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Padang R, Bagnall RD, Richmond DR, Bannon PG, Semsarian C. Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol. 2012;53(2):277–81.

    CAS  PubMed  Google Scholar 

  79. Bonachea EM, Chang SW, Zender G, LaHaye S, Fitzgerald-Butt S, McBride KL, et al. Rare GATA5 sequence variants identified in individuals with bicuspid aortic valve. Pediatr Res. 2014;76(2):211–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L, et al. GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med. 2014;33(5):1219–26.

    CAS  PubMed  Google Scholar 

  81. Martin M, Alonso-Montes C, Florez JP, Pichel IA, Rozado J, Andia JB, et al. Bicuspid aortic valve syndrome: a heterogeneous and still unknown condition. Int J Cardiol. 2014;177(3):1105.

    PubMed  Google Scholar 

  82. Wei D, Bao H, Zhou N, Zheng GF, Liu XY, Yang YQ. GATA5 loss-of-function mutation responsible for the congenital ventriculoseptal defect. Pediatr Cardiol. 2013;34(3):504–11.

    PubMed  Google Scholar 

  83. Zhang XL, Dai N, Tang K, Chen YQ, Chen W, Wang J, et al. GATA5 loss-of-function mutation in familial dilated cardiomyopathy. Int J Mol Med. 2015;35(3):763–70.

    PubMed  Google Scholar 

  84. Wang XH, Huang CX, Wang Q, Li RG, Xu YJ, Liu X, et al. A novel GATA5 loss-of-function mutation underlies lone atrial fibrillation. Int J Mol Med. 2013;31(1):43–50.

    PubMed  Google Scholar 

  85. Wei D, Bao H, Liu XY, Zhou N, Wang Q, Li RG, et al. GATA5 loss-of-function mutations underlie tetralogy of fallot. Int J Med Sci. 2013;10(1):34–42.

    CAS  PubMed  Google Scholar 

  86. Nemer G, Nemer M. Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development. 2002;129(17):4045–55.

    CAS  PubMed  Google Scholar 

  87. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007;81(2):280–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000;101(20):2345–8.

    CAS  PubMed  Google Scholar 

  89. Chao CS, McKnight KD, Cox KL, Chang AL, Kim SK, Feldman BJ. Novel GATA6 mutations in patients with pancreatic agenesis and congenital heart malformations. PLoS One. 2015;10(2):e0118449.

    PubMed  PubMed Central  Google Scholar 

  90. Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, et al. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55(10):662–7.

    CAS  PubMed  Google Scholar 

  91. Laforest B, Nemer M. Genetic insights into bicuspid aortic valve formation. Cardiol Res Pract. 2012;2012:180297.

    PubMed  PubMed Central  Google Scholar 

  92. Xu YJ, Di RM, Qiao Q, Li XM, Huang RT, Xue S, et al. GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve. Gene. 2018;663:115–20.

    CAS  PubMed  Google Scholar 

  93. Gharibeh L, Komati H, Bosse Y, Boodhwani M, Heydarpour M, Fortier M, et al. GATA6 regulates aortic valve remodeling and its Haploinsufficiency leads to RL-type bicuspid aortic valve. Circulation. 2018;138(10):1025–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lepore JJ, Mericko PA, Cheng L, Lu MM, Morrisey EE, Parmacek MS. GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis. J Clin Invest. 2006;116(4):929–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. van Berlo JH, Elrod JW, van den Hoogenhof MM, York AJ, Aronow BJ, Duncan SA, et al. The transcription factor GATA-6 regulates pathological cardiac hypertrophy. Circ Res. 2010;107(8):1032–40.

    PubMed  Google Scholar 

  96. Gould RA, Aziz H, Woods CE, Seman-Senderos MA, Sparks E, Preuss C, et al. ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet. 2018;51(1):42–50.

    PubMed  PubMed Central  Google Scholar 

  97. Biben C, Weber R, Kesteven S, Stanley E, McDonald L, Elliott DA, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res. 2000;87(10):888–95.

    CAS  PubMed  Google Scholar 

  98. Chung IM, Rajakumar G. Genetics of congenital heart defects: the NKX2-5 gene, a key player. Genes. 2016;7(2):6. https://doi.org/10.3390/genes7020006.

    Article  CAS  PubMed Central  Google Scholar 

  99. Beffagna G, Cecchetto A, Dal Bianco L, Lorenzon A, Angelini A, Padalino M, et al. R25C mutation in the NKX2.5 gene in Italian patients affected with non-syndromic and syndromic congenital heart disease. J Cardiovasc Med. 2013;14(8):582–6.

    CAS  Google Scholar 

  100. Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, et al. A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol. 2014;114(12):1891–5.

    CAS  PubMed  Google Scholar 

  101. Quintero-Rivera F, Xi QJ, Keppler-Noreuil KM, Lee JH, Higgins AW, Anchan RM, et al. MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Hum Mol Genet. 2015;24(8):2375–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xia F, Bainbridge MN, Tan TY, Wangler MF, Scheuerle AE, Zackai EH, et al. De novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am J Hum Genet. 2014;94(5):784–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE, et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci. 2014;17(5):664–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nistri S, Porciani MC, Attanasio M, Abbate R, Gensini GF, Pepe G. Association of Marfan syndrome and bicuspid aortic valve: frequency and outcome. Int J Cardiol. 2012;155(2):324–5.

    PubMed  Google Scholar 

  105. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9.

    CAS  PubMed  Google Scholar 

  106. Verstraeten A, Alaerts M, Van Laer L, Loeys B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum Mutat. 2016;37(6):524–31.

    CAS  PubMed  Google Scholar 

  107. Fedak PW, de Sa MP, Verma S, Nili N, Kazemian P, Butany J, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg. 2003;126(3):797–806.

    PubMed  Google Scholar 

  108. Pepe G, Nistri S, Giusti B, Sticchi E, Attanasio M, Porciani C, et al. Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome. BMC Med Genet. 2014;15:23.

    PubMed  PubMed Central  Google Scholar 

  109. Lesauskaite V, Sepetiene R, Jariene G, Patamsyte V, Zukovas G, Grabauskyte I, et al. FBN1 polymorphisms in patients with the dilatative pathology of the ascending thoracic aorta. Eur J Cardiothorac Surg. 2015;47(4):e124–30.

    PubMed  Google Scholar 

  110. Lemaire SA, McDonald ML, Guo DC, Russell L, Miller CC 3rd, Johnson RJ, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43(10):996–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Loeys BL, Dietz HC. Loeys-Dietz Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. GeneReviews(R). Seattle, WA: University of Washington; 2008.

    Google Scholar 

  112. Arrington CB, Sower CT, Chuckwuk N, Stevens J, Leppert MF, Yetman AT, et al. Absence of TGFBR1 and TGFBR2 mutations in patients with bicuspid aortic valve and aortic dilation. Am J Cardiol. 2008;102(5):629–31.

    CAS  PubMed  Google Scholar 

  113. Girdauskas E, Schulz S, Borger MA, Mierzwa M, Kuntze T. Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg. 2011;91(5):e70–1.

    PubMed  Google Scholar 

  114. Olivieri LJ, Baba RY, Arai AE, Bandettini WP, Rosing DR, Bakalov V, et al. Spectrum of aortic valve abnormalities associated with aortic dilation across age groups in turner syndrome. Circ Cardiovasc Imaging. 2013;6(6):1018–23.

    PubMed  PubMed Central  Google Scholar 

  115. Mortensen KH, Andersen NH, Gravholt CH. Cardiovascular phenotype in turner syndrome--integrating cardiology, genetics, and endocrinology. Endocr Rev. 2012;33(5):677–714.

    CAS  PubMed  Google Scholar 

  116. Bondy C, Bakalov VK, Cheng C, Olivieri L, Rosing DR, Arai AE. Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in turner syndrome. J Med Genet. 2013;50(10):662–5.

    PubMed  Google Scholar 

  117. Chang AC, Fu Y, Garside VC, Niessen K, Chang L, Fuller M, et al. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288–300.

    CAS  PubMed  Google Scholar 

  118. Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MTH, et al. Nos3 mutation leads to abnormal neural crest cell and second heart field lineage patterning in bicuspid aortic valve formation. Dis Model Mech. 2018;11(10) https://doi.org/10.1242/dmm.034637.

  120. Koenig SN, Bosse KM, Nadorlik HA, Lilly B, Garg V. Evidence of Aortopathy in mice with Haploinsufficiency of in -null background. J Cardiovasc Dev Dis. 2015;2(1):17–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Aicher D, Urbich C, Zeiher A, Dimmeler S, Schafers HJ. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann Thorac Surg. 2007;83(4):1290–4.

    PubMed  Google Scholar 

  122. Thomas PS, Sridurongrit S, Ruiz-Lozano P, Kaartinen V. Deficient signaling via Alk2 (Acvr1) leads to bicuspid aortic valve development. PLoS One. 2012;7(4):e35539.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development. 2004;131(14):3481–90.

    CAS  PubMed  Google Scholar 

  124. Wang J, Sridurongrit S, Dudas M, Thomas P, Nagy A, Schneider MD, et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol. 2005;286(1):299–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 2006;38(5):525–7.

    CAS  PubMed  Google Scholar 

  126. Makki N, Capecchi MR. Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet. 2012;21(1):26–31.

    PubMed  Google Scholar 

  127. Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC, Nester MJ, et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet. 2005;37(10):1035–7.

    CAS  PubMed  Google Scholar 

  128. Odelin G, Faure E, Coulpier F, Di Bonito M, Bajolle F, Studer M, et al. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve. Development. 2018;145(1) https://doi.org/10.1242/dev.151944.

  129. Odelin G, Faure E, Kober F, Maurel-Zaffran C, Theron A, Coulpier F, et al. Loss of Krox20 results in aortic valve regurgitation and impaired transcriptional activation of fibrillar collagen genes. Cardiovasc Res. 2014;104(3):443–55.

    CAS  PubMed  Google Scholar 

  130. Theron A, Odelin G, Faure E, Avierinos JF, Zaffran S. Krox20 heterozygous mice: a model of aortic regurgitation associated with decreased expression of fibrillar collagen genes. Arch Cardiovasc Dis. 2016;109(3):188–98.

    PubMed  Google Scholar 

  131. Warner LE, Mancias P, Butler IJ, McDonald CM, Keppen L, Koob KG, et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet. 1998;18(4):382–4.

    CAS  PubMed  Google Scholar 

  132. Akerberg BN, Sarangam ML, Stankunas K. Endocardial Brg1 disruption illustrates the developmental origins of semilunar valve disease. Dev Biol. 2015;407(1):158–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Li W, Xiong Y, Shang C, Twu KY, Hang CT, Yang J, et al. Brg1 governs distinct pathways to direct multiple aspects of mammalian neural crest cell development. Proc Natl Acad Sci U S A. 2013;110(5):1738–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schneppenheim R, Fruhwald MC, Gesk S, Hasselblatt M, Jeibmann A, Kordes U, et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet. 2010;86(2):279–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, et al. Mutations affecting components of the SWI/SNF complex cause coffin-Siris syndrome. Nat Genet. 2012;44(4):376–8.

    CAS  PubMed  Google Scholar 

  136. Mommersteeg MT, Yeh ML, Parnavelas JG, Andrews WD. Disrupted slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves. Cardiovasc Res. 2015;106(1):55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17(6):444–51.

    CAS  PubMed  Google Scholar 

  138. Niwa K, Perloff JK, Bhuta SM, Laks H, Drinkwater DC, Child JS, et al. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation. 2001;103(3):393–400.

    CAS  PubMed  Google Scholar 

  139. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for vascular medicine. Circulation. 2010;121(13):e266–369.

    PubMed  Google Scholar 

  140. Gersony DR, McClaughlin MA, Jin Z, Gersony WM. The effect of beta-blocker therapy on clinical outcome in patients with Marfan's syndrome: a meta-analysis. Int J Cardiol. 2007;114(3):303–8.

    PubMed  Google Scholar 

  141. Plein A, Calmont A, Fantin A, Denti L, Anderson NA, Scambler PJ, et al. Neural crest-derived SEMA3C activates endothelial NRP1 for cardiac outflow tract septation. J Clin Invest. 2015;125(7):2661–76.

    PubMed  PubMed Central  Google Scholar 

  142. Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, et al. Identification of a Wnt/Dvl/beta-catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111(5):673–85.

    CAS  PubMed  Google Scholar 

  143. Allen BD, Markl M, Barker AJ, van Ooij P, Carr JC, Malaisrie SC, et al. Influence of beta-blocker therapy on aortic blood flow in patients with bicuspid aortic valve. Int J Cardiovasc Imaging. 2016;32(4):621–8.

    PubMed  PubMed Central  Google Scholar 

  144. Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science. 2011;332(6027):361–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lim DS, Lutucuta S, Bachireddy P, Youker K, Evans A, Entman M, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103(6):789–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S. iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer's mice: understanding the interface between physiology and disease. PLoS One. 2008;3(7):e2750.

    PubMed  PubMed Central  Google Scholar 

  148. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC 3rd. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358(26):2787–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Chiu HH, Wu MH, Wang JK, Lu CW, Chiu SN, Chen CA, et al. Losartan added to beta-blockade therapy for aortic root dilation in Marfan syndrome: a randomized, open-label pilot study. Mayo Clin Proc. 2013;88(3):271–6.

    CAS  PubMed  Google Scholar 

  150. Pees C, Laccone F, Hagl M, Debrauwer V, Moser E, Michel-Behnke I. Usefulness of losartan on the size of the ascending aorta in an unselected cohort of children, adolescents, and young adults with Marfan syndrome. Am J Cardiol. 2013;112(9):1477–83.

    CAS  PubMed  Google Scholar 

  151. Bhatt AB, Buck JS, Zuflacht JP, Milian J, Kadivar S, Gauvreau K, et al. Distinct effects of losartan and atenolol on vascular stiffness in Marfan syndrome. Vasc Med. 2015;20(4):317–25.

    CAS  PubMed  Google Scholar 

  152. Forteza A, Evangelista A, Sanchez V, Teixido-Tura G, Sanz P, Gutierrez L, et al. Efficacy of losartan vs. atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur Heart J. 2015;37(12):978–85.

    PubMed  Google Scholar 

  153. Milleron O, Arnoult F, Ropers J, Aegerter P, Detaint D, Delorme G, et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2015;36(32):2160–6.

    PubMed  Google Scholar 

  154. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus losartan in children and young adults with Marfan's syndrome. N Engl J Med. 2014;371(22):2061–71.

    PubMed  PubMed Central  Google Scholar 

  155. Pitcher A, Emberson J, Lacro RV, Sleeper LA, Stylianou M, Mahony L, et al. Design and rationale of a prospective, collaborative meta-analysis of all randomized controlled trials of angiotensin receptor antagonists in Marfan syndrome, based on individual patient data: a report from the Marfan treatment Trialists' collaboration. Am Heart J. 2015;169(5):605–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development. 2001;128(16):3061–70.

    CAS  PubMed  Google Scholar 

  157. Ohnemus D, Oster ME, Gatlin S, Jokhadar M, Mahle WT. The effect of angiotensin-converting enzyme inhibitors on the rate of ascending aorta dilation in patients with bicuspid aortic valve. Congenit Heart Dis. 2015;10(1):E1–5.

    PubMed  Google Scholar 

  158. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800.

    PubMed  Google Scholar 

  159. Della Corte A, Body SC, Booher AM, Schaefers HJ, Milewski RK, Michelena HI, et al. Surgical treatment of bicuspid aortic valve disease: knowledge gaps and research perspectives. J Thorac Cardiovasc Surg. 2014;147(6):1749–57.

    PubMed  Google Scholar 

  160. Accf/Aha/Aats/Acr/Asa/Sca/Scai/Sir/Sts/Svm Guidelines For The D, Management Of Patients With Thoracic Aortic Disease Representative Members, Hiratzka LF, Creager MA, Isselbacher EM, Svensson LG, et al. Surgery for aortic dilatation in patients with bicuspid aortic valves: a statement of clarification from the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2016;133(7):680–6.

    Google Scholar 

  161. Bentall H, De Bono A. A technique for complete replacement of the ascending aorta. Thorax. 1968;23(4):338–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gott VL, Greene PS, Alejo DE, Cameron DE, Naftel DC, Miller DC, et al. Replacement of the aortic root in patients with Marfan's syndrome. N Engl J Med. 1999;340(17):1307–13.

    CAS  PubMed  Google Scholar 

  163. Benedetto U, Melina G, Takkenberg JJ, Roscitano A, Angeloni E, Sinatra R. Surgical management of aortic root disease in Marfan syndrome: a systematic review and meta-analysis. Heart. 2011;97(12):955–8.

    PubMed  Google Scholar 

  164. David TE. Aortic valve sparing operations: outcomes at 20 years. Ann Cardiothorac Surg. 2013;2(1):24–9.

    PubMed  PubMed Central  Google Scholar 

  165. Orwat S, Diller GP, van Hagen IM, Schmidt R, Tobler D, Greutmann M, et al. Risk of pregnancy in moderate and severe aortic stenosis: from the multinational ROPAC registry. J Am Coll Cardiol. 2016;68(16):1727–37.

    PubMed  Google Scholar 

  166. European Society of Gynecology (ESG), the Association for European Paediatric Cardiology (AEPC), and the German Society for GenderMedicine (DGesGM), Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(24):3147–97.

    Google Scholar 

  167. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomstrom-Lundqvist C, Cifkova R, De Bonis M, et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165–241.

    PubMed  Google Scholar 

  168. Lésniak-Sobelga A, Kostklewicz M, Wisniowska-Smialek S, Rubis P, Podolec P. Outcome of pregnancy in patients with bicuspid aortic valve – a study of 89 patients. Journal of Rare Cardiovascular Diseases. 2014;2(1):9–14.

    Google Scholar 

  169. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44.

    PubMed  Google Scholar 

  170. Maron BJ, Zipes DP, Kovacs RJ, American Heart Association E, Arrhythmias Committee of Council on Clinical Cardiology CoCDiYCoC, Stroke Nursing CoFG, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e256–61.

    PubMed  Google Scholar 

  171. Braverman AC, Harris KM, Kovacs RJ, Maron BJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 7: aortic diseases, including Marfan syndrome: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2398–405.

    PubMed  Google Scholar 

  172. Ferencik M, Pape LA. Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves. Am J Cardiol. 2003;92(1):43–6.

    PubMed  Google Scholar 

  173. Dore A, Brochu MC, Baril JF, Guertin MC, Mercier LA. Progressive dilation of the diameter of the aortic root in adults with a bicuspid aortic valve. Cardiol Young. 2003;13(6):526–31.

    PubMed  Google Scholar 

  174. Detaint D, Michelena HI, Nkomo VT, Vahanian A, Jondeau G, Sarano ME. Aortic dilatation patterns and rates in adults with bicuspid aortic valves: a comparative study with Marfan syndrome and degenerative aortopathy. Heart. 2014;100(2):126–34.

    PubMed  Google Scholar 

  175. Yap SC, Kouwenhoven GC, Takkenberg JJ, Galema TW, Meijboom FJ, van Domburg R, et al. Congenital aortic stenosis in adults: rate of progression and predictors of clinical outcome. Int J Cardiol. 2007;122(3):224–31.

    PubMed  Google Scholar 

  176. Etz CD, Zoli S, Brenner R, Roder F, Bischoff M, Bodian CA, et al. When to operate on the bicuspid valve patient with a modestly dilated ascending aorta. Ann Thorac Surg. 2010;90(6):1884–90. discussion 91-2

    PubMed  Google Scholar 

  177. Shimada I, Rooney SJ, Pagano D, Farneti PA, Davies P, Guest PJ, et al. Prediction of thoracic aortic aneurysm expansion: validation of formulae describing growth. Ann Thorac Surg. 1999;67(6):1968–70. discussion 79–80

    CAS  PubMed  Google Scholar 

  178. Hales AR, Mahle WT. Echocardiography screening of siblings of children with bicuspid aortic valve. Pediatrics. 2014;133(5):e1212–7.

    PubMed  Google Scholar 

  179. McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, et al. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005;134A(2):180–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Verstraeten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verstraeten, A., Roos-Hesselink, J., Loeys, B. (2020). Bicuspid Aortic Valve. In: Baars, H.F., Doevendans, P.A.F.M., Houweling, A.C., van Tintelen, J.P. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-030-45457-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45457-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45456-2

  • Online ISBN: 978-3-030-45457-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics