Skip to main content

Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 2, Analyses of Ignition Systems, Laminar and Turbulent Flames

  • Chapter
  • First Online:
Book cover Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

Chapter 3 summarized the highlights of the concepts behind the CSP method and the TSR analysis. In this chapter, we will discuss a few applications of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Valorani, D.A. Goussis, J. Comput. Phys. 169, 44 (2001)

    Article  MathSciNet  Google Scholar 

  2. M. Valorani, P. Ciottoli, R. Malpica Galassi, S. Paolucci, T. Grenga, E. Martelli, Flow Turbul. Combust. 101(4), 1023 (2018)

    Google Scholar 

  3. M. Valorani, S. Paolucci, J. Comput. Phys. 228, 4665 (2009)

    Article  MathSciNet  Google Scholar 

  4. H.N. Najm, M. Valorani, J. Comput. Phys. 270, 544 (2014)

    Article  MathSciNet  Google Scholar 

  5. L. Wang, X. Han, Y. Cao, H.N. Najm, J. Comput. Phys. 335, 404 (2017)

    Article  MathSciNet  Google Scholar 

  6. X. Han, M. Valorani, H.N. Najm, J. Chem. Phys. 150(19), 194101 (2019)

    Article  Google Scholar 

  7. M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, H.N. Najm, in Computational Fluid and Solid Mechanics 2005, ed. by K. Bathe (Elsevier Science, 2005), pp. 900–904

    Google Scholar 

  8. R.M. Galassi, P.P. Ciottoli, S.M. Sarathy, H.G. Im, S. Paolucci, M. Valorani, Combust. Flame 197, 439 (2018)

    Article  Google Scholar 

  9. A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Flame 117(6), 685–708 (1999)

    Article  Google Scholar 

  10. A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Theory Model. 3(6), 233–257 (1999)

    Article  Google Scholar 

  11. E.A. Tingas, D.J. Diamantis, D.A. Goussis, Combust. Theory Model. 22(6), 1049 (2018)

    Article  MathSciNet  Google Scholar 

  12. D.A. Goussis, H.N. Najm, Multiscale Model. Simul. 5(4), 1297 (2006)

    Article  MathSciNet  Google Scholar 

  13. D.G. Patsatzis, D.A. Goussis, Math. Biosci. 315, 108220 (2019)

    Article  MathSciNet  Google Scholar 

  14. D.A. Michalaki, I. Lida Goussis, J. Math. Biol. 77(3), 821 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Valorani, P. Ciottoli, R. Malpica Galassi, CSPTk - A software toolkit for the CSP and TSR analysis of kinetic models and the simplification and reduction of chemical kinetics mechanisms. The software can be obtained upon request to M.Valorani (mauro.valorani@uniroma1.it) (2015)

    Google Scholar 

  16. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Combust. Flame 162(9), 3263 (2015)

    Article  Google Scholar 

  17. E.A. Tingas, H.G. Im, D.C. Kyritsis, D.A. Goussis, Fuel 211, 898 (2018)

    Article  Google Scholar 

  18. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Fuel 183, 90 (2016)

    Article  Google Scholar 

  19. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Combust. Theory Model. 21(1), 93 (2017)

    Article  MathSciNet  Google Scholar 

  20. D.M. Manias, E.A. Tingas, C.E. Frouzakis, K. Boulouchos, D.A. Goussis, Combust. Flame 164, 111 (2016)

    Article  Google Scholar 

  21. D.J. Diamantis, E. Mastorakos, D.A. Goussis, Combust. Theory Model. 19(3), 382 (2015)

    Article  MathSciNet  Google Scholar 

  22. A. Kazakov, M. Chaos, Z. Zhao, F.L. Dryer, J. Phys. Chem. A 110(21), 7003 (2006)

    Article  Google Scholar 

  23. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, J. Energ. Eng. 145(1), 04018074 (2018)

    Article  Google Scholar 

  24. Y. Li, A. Alfazazi, B. Mohan, E.A. Tingas, J. Badra, H.G. Im, S.M. Sarathy, Fuel 247, 164 (2019)

    Article  Google Scholar 

  25. W. Song, E.A. Tingas, H.G. Im, Combust. Flame 195, 84 (2018)

    Article  Google Scholar 

  26. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Fuel 169, 15 (2016)

    Article  Google Scholar 

  27. E.A. Tingas, D.M. Manias, S.M. Sarathy, D.A. Goussis, Fuel 223, 74 (2018)

    Article  Google Scholar 

  28. E.A. Tingas, Z. Wang, S.M. Sarathy, H.G. Im, D.A. Goussis, Combust. Flame 188, 28 (2018)

    Article  Google Scholar 

  29. S.M. Sarathy, E.A. Tingas, E.F. Nasir, A. Detogni, Z. Wang, A. Farooq, H. Im, Proc (Combust, Inst, 2018)

    Google Scholar 

  30. A.L. Sánchez, F.A. Williams, Prog. Energy Combust. Sci. 41, 1 (2014)

    Article  Google Scholar 

  31. K. Zhang, C. Banyon, J. Bugler, H.J. Curran, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. B’Chir, K.A. Heufer, Combustion and Flame 172, 116 (2016)

    Article  Google Scholar 

  32. N. Peters, Turbulent Combustion (Cambridge University Press, UK, Cambridge, UK, 2000)

    Book  MATH  Google Scholar 

  33. C. Safta, H.N. Najm, O. Knio, Sandia Report SAND2011-3282 (2011). http://www.sandia.gov/tchem

  34. J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, J.J.J. Scire, International Journal of Chemical Kinetics 39, 109 (2007)

    Article  Google Scholar 

  35. P. Pal, M. Valorani, P.G. Arias, H.G. Im, M.S. Wooldridge, P.P. Ciottoli, R. Malpica Galassi, Proc. Combust. Inst. 36(3), 3705 (2017)

    Google Scholar 

  36. P. Pal, A.B. Mansfield, M.S. Wooldridge, H.G. Im, Combustion Theory and Modelling 66(5), 1 (2015)

    Google Scholar 

  37. M. Valorani, P.P. Ciottoli, R.M. Galassi, Proc. Combust. Inst. 36(1), 1357 (2017)

    Article  Google Scholar 

  38. C. Trevino, Progress in Astronautics and Aeronautics. AIAA 131, 19 (1991)

    Google Scholar 

  39. P. Boivin, C. Jimenez, A.L. Sànchez, F.A. Williams, Proceedings of the Combustion Institute 33(1), 517 (2011)

    Article  Google Scholar 

  40. P. Boivin, A.L. Sànchez, F.A. Williams, Combustion and Flame 159(2), 748 (2012)

    Article  Google Scholar 

  41. A. Cavaliere, M. de Joannon, Progress in Energy and Combustion science 30(4), 329 (2004)

    Article  Google Scholar 

  42. H.G. Im, in Modeling and Simulation of Turbulent Combustion (Springer, 2018), pp. 99–132

    Google Scholar 

  43. H.G. Im, P.G. Arias, S. Chaudhuri, H.A. Uranakara, Combustion Science and Technology 188(8), 1182 (2016)

    Article  Google Scholar 

  44. P. Arias, H. Uranakar, S. Chaudhuri, H. Im, in APS Meeting Abstracts (2015)

    Google Scholar 

  45. D.M. Manias, E.A. Tingas, F.E.H. Pérez, R.M. Galassi, P.P. Ciottoli, M. Valorani, H.G. Im, Combust. Flame 200, 155 (2019)

    Article  Google Scholar 

  46. J.A. Wünning, J.G. Wünning, Progress in Energy and Combustion Science 23, 81 (1997)

    Article  Google Scholar 

  47. A. Cavaliere, M. de Joannon, Progress in Energy and Combustion Science 30, 329 (2004)

    Article  Google Scholar 

  48. B.B. Dally, E. Riesmeier, N. Peters, Combustion and Flame 137, 418 (2004)

    Article  Google Scholar 

  49. M. de Joannon, G. Sorrentino, A. Cavaliere, Combustion and Flame 159, 1832 (2012)

    Article  Google Scholar 

  50. X. Gao, F. Duan, S.C. Lim, M.S. Yip, Energy 59, 559 (2013)

    Article  Google Scholar 

  51. D.M. Manias, E.A. Tingas, Y. Minamoto, H.G. Im, Combustion and Flame 208, 86 (2019)

    Article  Google Scholar 

  52. Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Combustion Science and Technology 186(8), 1075 (2014)

    Article  Google Scholar 

  53. Y. Minamoto, N. Swaminathan, Combustion and Flame 161(4), 1063 (2014)

    Article  Google Scholar 

  54. Y. Minamoto, N. Swaminathan, S.R. Cant, T. Leung, Combustion and Flame 161(11), 2801 (2014)

    Article  Google Scholar 

  55. Z.M. Nikolaou, N. Swaminathan, Combustion and Flame 161(12), 3073 (2014)

    Article  Google Scholar 

  56. P.R. Medwell, P.A. Kalt, B.B. Dally, Combustion and Flame 148(1–2), 48 (2007)

    Article  Google Scholar 

  57. B.B. Dally, A.N. Karpetis, R.S. Barlow, Proceedings of the Combustion Institute 29, 1147 (2002)

    Article  Google Scholar 

  58. E. Oldenhof, M.J. Tummers, E. van Veen, D. Roekaerts, Combustion and Flame 157, 1167 (2010)

    Article  Google Scholar 

  59. E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Combustion and Flame 158(8), 1553 (2011)

    Article  Google Scholar 

  60. N. Kornev, H. Kröger, E. Hassel, Communications in Numerial Methods in Engineering 24, 875 (2008)

    Article  Google Scholar 

  61. R.W. Bilger, S.H. Starner, R.J. Kee, Combustion and Flame 80(2), 135 (1990)

    Article  Google Scholar 

  62. C. Duwig, P. Iudiciani, Fuel 123, 256 (2014)

    Article  Google Scholar 

  63. Z. Li, A. Cuoci, A. Parente, Proceedings of the Combustion Institute (2018)

    Google Scholar 

  64. S.H. Lam, D.A. Goussis, Proc. Comb. Inst. 22, 931 (1988)

    Article  Google Scholar 

  65. S.H. Lam, Combust. Sci. Technol. 89, 375 (1993)

    Article  Google Scholar 

  66. Z. Li, R.M. Galassi, P.P. Ciottoli, A. Parente, M. Valorani, Combust. Flame 208, 281 (2019)

    Article  Google Scholar 

  67. H.N. Najm, M. Valorani, D.A. Goussis, J. Prager, Combustion Theory and Modelling 14(2), 257 (2010)

    Article  Google Scholar 

  68. N.A.K. Doan, N. Swaminathan, Combustion and Flame 201, 234 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this contribution to the memory of Prof. S.H. Lam who passed away on Oct. 29, 2018.

HGI and MV acknowledge the support of a competitive research funding from King Abdullah University of Science and Technology (KAUST).

MV acknowledges the support of the Italian Ministry of University and Research (MIUR).

HNN acknowledges the support of the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multimission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-NA-0003525.

AP and ZL have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 714605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Valorani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valorani, M. et al. (2020). Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 2, Analyses of Ignition Systems, Laminar and Turbulent Flames. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_4

Download citation

Publish with us

Policies and ethics