Skip to main content

Prenatal Exposure to Endocrine Disrupting Chemicals and Their Effect on Health Later in Life

  • Chapter
  • First Online:

Abstract

Evidence is increasing that chemical exposure significantly contributes to human ill health. This chapter focuses on endocrine disrupting chemicals (EDCs), a group of substances that interfere with our endogenous hormonal system. Exposure to EDCs, in particular during pre- and early postnatal development, has been associated with a number of disorders such as decreased fertility, hormone-related cancers, as well as neurodevelopmental and metabolic disorders. EDCs differ from classical toxicants in several ways, they can for example affect the organism already at very low doses and introduce long-term changes that manifest much later in life. Such effects could be mediated by epigenetic changes. Indeed, a large number of experimental studies have shown that EDCs can induce epigenetic changes, in particular alteration in DNA methylation. This is corroborated by some epidemiological studies where epigenetic changes were linked to EDC exposure. In this chapter, we introduce examples of EDCs, their exposure sources and modes of actions, and summarize the evidence for their effects on the epigenome in relation to their impact on fertility, neurodevelopment, and metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. The European Chemical Industry Council (cefic), Facts and Figures 2017. 2017.

    Google Scholar 

  2. OECD. OECD environmental outlook to 2050: the consequences of inaction. Paris: OECD Publishing; 2012.

    Book  Google Scholar 

  3. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78.

    Article  CAS  PubMed  Google Scholar 

  4. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yang C, et al. Persistent organic pollutants as risk factors for obesity and diabetes. Curr Diab Rep. 2017;17(12):132.

    Article  PubMed  CAS  Google Scholar 

  6. Mallozzi M, et al. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: a review on the major concerns. Birth Defects Res C Embryo Today. 2016;108(3):224–42.

    Article  CAS  PubMed  Google Scholar 

  7. Zoeller RT, et al. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ Health. 2014;13:118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zoeller RT, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153(9):4097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. WHO/UNEP, State of the science of endocrine disrupting chemicals – 2012. 2013.

    Google Scholar 

  10. Vandenberg LN, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ (1994), 2009. 43(1): p. 170–181.

    Article  CAS  PubMed  Google Scholar 

  12. Weiss JM, et al. Daily intake of phthalates, MEHP, and DINCH by ingestion and inhalation. Chemosphere. 2018;208:40–9.

    Article  CAS  PubMed  Google Scholar 

  13. Koch HM, et al. Identifying sources of phthalate exposure with human biomonitoring: results of a 48h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health. 2013;216(6):672–81.

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Cervantes J, Paseiro-Losada P. Determination of bisphenol A in, and its migration from, PVC stretch film used for food packaging. Food Addit Contam. 2003;20(6):596–606.

    Article  CAS  PubMed  Google Scholar 

  15. Hu XC, et al. Detection of poly- and Perfluoroalkyl Substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3(10):344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faniband M, Lindh CH, Jonsson BA. Human biological monitoring of suspected endocrine-disrupting compounds. Asian J Androl. 2014;16(1):5–16.

    Article  PubMed  CAS  Google Scholar 

  17. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Perspect. 2011;119(6):878–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect. 2007;115(Suppl 1):98–105.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramhoj L, et al. Perfluorohexane Sulfonate (PFHxS) and a mixture of endocrine disrupters reduce thyroxine levels and cause anti-androgenic effects in rats. Toxicol Sci. 2018;163:579–91.

    Article  PubMed  CAS  Google Scholar 

  20. Bergman A, et al. The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect. 2013;121(4):A104–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shu H, et al. Temporal trends of phthalate exposures during 2007-2010 in Swedish pregnant women. J Expo Sci Environ Epidemiol. 2018;28:437–47.

    Article  CAS  PubMed  Google Scholar 

  22. Sarcinelli PN, et al. Dietary and reproductive determinants of plasma organochlorine levels in pregnant women in Rio de Janeiro. Environ Res. 2003;91(3):143–50.

    Article  CAS  PubMed  Google Scholar 

  23. Vuong AM, et al. Maternal Polybrominated Diphenyl Ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME study, Cincinnati, USA. Environ Health Perspect. 2015;123(10):1079–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Needham LL, et al. Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol. 2011;45(3):1121–6.

    Article  CAS  PubMed  Google Scholar 

  25. Gutzkow KB, et al. Placental transfer of perfluorinated compounds is selective—a Norwegian mother and child sub-cohort study. Int J Hyg Environ Health. 2012;215(2):216–9.

    Article  PubMed  CAS  Google Scholar 

  26. Mazdai A, et al. Polybrominated diphenyl ethers in maternal and fetal blood samples. Environ Health Perspect. 2003;111(9):1249–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guvenius DM, et al. Human prenatal and postnatal exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, and pentachlorophenol. Environ Health Perspect. 2003;111(9):1235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inoue K, et al. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect. 2004;112(11):1204–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schecter A, Kassis I, Papke O. Partitioning of dioxins, dibenzofurans, and coplanar PCBS in blood, milk, adipose tissue, placenta and cord blood from five American women. Chemosphere. 1998;37(9–12):1817–23.

    Article  CAS  PubMed  Google Scholar 

  30. Group EW. Body burden: the pollution in newborns. 2005.

    Google Scholar 

  31. Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol. 2016;214(5):559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crain DA, et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril. 2008; 90(4):911–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bale TL, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68(4):314–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.

    Article  CAS  PubMed  Google Scholar 

  37. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305(5691):1733–6.

    Article  CAS  PubMed  Google Scholar 

  38. Jacobs MN, et al. Marked for life: epigenetic effects of endocrine disrupting chemicals. Annu Rev Environ Resour. 2017;42:105–60.

    Article  Google Scholar 

  39. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  40. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marczylo EL, Jacobs MN, Gant TW. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol. 2016;46(8):676–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tran NQV, Miyake K. Neurodevelopmental disorders and environmental toxicants: epigenetics as an underlying mechanism. Int J Genomics. 2017;2017:7526592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Walker DM, Gore AC. Epigenetic impacts of endocrine disruptors in the brain. Front Neuroendocrinol. 2017;44:1–26.

    Article  CAS  PubMed  Google Scholar 

  44. Alavian-Ghavanini A, Ruegg J. Understanding epigenetic effects of endocrine disrupting chemicals: from mechanisms to novel test methods. Basic Clin Pharmacol Toxicol. 2018;122(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  45. Manikkam M, et al. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8(1):e55387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wolstenholme JT, Goldsby JA, Rissman EF. Transgenerational effects of prenatal bisphenol A on social recognition. Horm Behav. 2013;64(5):833–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anway MD, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    Article  CAS  PubMed  Google Scholar 

  48. Titus-Ernstoff L, et al. Menstrual and reproductive characteristics of women whose mothers were exposed in utero to diethylstilbestrol (DES). Int J Epidemiol. 2006;35(4):862–8.

    Article  PubMed  Google Scholar 

  49. Bellinger DC. A strategy for comparing the contributions of environmental chemicals and other risk factors to neurodevelopment of children. Environ Health Perspect. 2012;120(4):501–7.

    Article  CAS  PubMed  Google Scholar 

  50. Landrigan PJ, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462–512.

    Article  PubMed  Google Scholar 

  51. Levine H, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23(6):646–59.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hamilton BE, Ventura SJ. Fertility and abortion rates in the United States, 1960-2002. Int J Androl. 2006;29(1):34–45.

    Article  PubMed  Google Scholar 

  53. Lassen TH, et al. Trends in rates of natural conceptions among Danish women born during 1960–1984. Hum Reprod. 2012;27(9):2815–22.

    Article  PubMed  Google Scholar 

  54. Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.

    Article  PubMed  Google Scholar 

  55. Sharma R, et al. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11:66.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fowler PA, et al. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol Cell Endocrinol. 2012;355(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ho SM, et al. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol. 2017;68:85–104.

    Article  CAS  PubMed  Google Scholar 

  58. Al Jishi T, Sergi C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod Toxicol. 2017;71:71–7.

    Article  PubMed  CAS  Google Scholar 

  59. Palmer JR, et al. Infertility among women exposed prenatally to diethylstilbestrol. Am J Epidemiol. 2001;154(4):316–21.

    Article  CAS  PubMed  Google Scholar 

  60. Kaufman RH, et al. Continued follow-up of pregnancy outcomes in diethylstilbestrol-exposed offspring. Obstet Gynecol. 2000;96(4):483–9.

    CAS  PubMed  Google Scholar 

  61. Signorile PG, et al. Pre-natal exposure of mice to bisphenol A elicits an endometriosis-like phenotype in female offspring. Gen Comp Endocrinol. 2010;168(3):318–25.

    Article  CAS  PubMed  Google Scholar 

  62. Ziv-Gal A, et al. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol Appl Pharmacol. 2015;284(3):354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilcox AJ, et al. Fertility in men exposed prenatally to diethylstilbestrol. N Engl J Med. 1995;332(21):1411–6.

    Article  CAS  PubMed  Google Scholar 

  64. Palmer JR, et al. Urogenital abnormalities in men exposed to diethylstilbestrol in utero: a cohort study. Environ Health. 2009;8:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Eisenberg ML, et al. The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS One. 2011;6(5):e18973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mendiola J, et al. Shorter anogenital distance predicts poorer semen quality in young men in Rochester, New York. Environ Health Perspect. 2011;119(7):958–63.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Swan SH, et al. First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod. 2015;30(4):963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bornehag CG, et al. Prenatal phthalate exposures and anogenital distance in Swedish boys. Environ Health Perspect. 2015;123(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  69. Swan SH, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bustamante-Montes LP, et al. Prenatal exposure to phthalates is associated with decreased anogenital distance and penile size in male newborns. J Dev Orig Health Dis. 2013;4(4):300–6.

    Article  CAS  PubMed  Google Scholar 

  71. Wenzel AG, et al. Influence of race on prenatal phthalate exposure and anogenital measurements among boys and girls. Environ Int. 2018;110:61–70.

    Article  CAS  PubMed  Google Scholar 

  72. Gray LE Jr, et al. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci. 2000;58(2):350–65.

    Article  CAS  PubMed  Google Scholar 

  73. Macleod DJ, et al. Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl. 2010;33(2):279–87.

    Article  CAS  PubMed  Google Scholar 

  74. Foster PM. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl, 2006. 29(1): 140–147; discussion 181-5.

    Article  CAS  PubMed  Google Scholar 

  75. Vogel SA. The politics of plastics: the making and unmaking of bisphenol a “safety”. Am J Public Health. 2009;99(Suppl 3):S559–66.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nakamura T, et al. Estrogen receptor subtypes selectively mediate female mouse reproductive abnormalities induced by neonatal exposure to estrogenic chemicals. Toxicology. 2008;253(1–3):117–24.

    Article  CAS  PubMed  Google Scholar 

  77. Couse JF, Korach KS. Estrogen receptor-alpha mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology. 2004;205(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

  78. Mahoney MM, Padmanabhan V. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol. 2010;247(2):98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kundakovic M, et al. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol a exposure. Proc Natl Acad Sci USA. 2013;110(24):9956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wise LA, et al. Prenatal diethylstilbestrol exposure and reproductive hormones in premenopausal women. J Dev Orig Health Dis. 2015;6(3):208–16.

    Article  CAS  PubMed  Google Scholar 

  81. Lee BM, Koo HJ. Hershberger assay for antiandrogenic effects of phthalates. J Toxicol Environ Health A. 2007;70(15–16):1365–70.

    Article  CAS  PubMed  Google Scholar 

  82. Wilson VS, et al. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol Lett. 2004;146(3):207–15.

    Article  CAS  PubMed  Google Scholar 

  83. Wu S, et al. Dynamic effect of di-2-(ethylhexyl) phthalate on testicular toxicity: epigenetic changes and their impact on gene expression. Int J Toxicol. 2010;29(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  84. Welsh M, et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008;118(4):1479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martino-Andrade AJ, et al. Timing of prenatal phthalate exposure in relation to genital endpoints in male newborns. Andrology. 2016;4(4):585–93.

    Article  CAS  PubMed  Google Scholar 

  86. Gray LE Jr et al. Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. Int J Androl, 2006. 29(1): 96–104; discussion 105–8.

    Article  PubMed  CAS  Google Scholar 

  87. Newschaffer CJ, Falb MD, Gurney JG. National autism prevalence trends from United States special education data. Pediatrics. 2005;115(3):e277–82.

    Article  PubMed  Google Scholar 

  88. Hertz-Picciotto I, Delwiche L. The rise in autism and the role of age at diagnosis. Epidemiology. 2009;20(1):84–90.

    Article  PubMed  PubMed Central  Google Scholar 

  89. (EPA), U.S.E.P.A., America’s children and the environment. 2013.

    Google Scholar 

  90. McDonald ME, Paul JF. Timing of increased autistic disorder cumulative incidence. Environ Sci Technol. 2010;44(6):2112–8.

    Article  CAS  PubMed  Google Scholar 

  91. Mojtabai R, Olfson M, Han B. National Trends in the prevalence and treatment of depression in adolescents and young adults. Pediatrics. 2016;138(6):e20161878.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chan KY, et al. Prevalence of schizophrenia in China between 1990 and 2010. J Glob Health. 2015;5(1):010410.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hallmayer J, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68(11):1095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sandin S, et al. THe familial risk of autism. JAMA. 2014;311(17):1770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry. 2014;4:e360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Braun JM, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics. 2011;128(5):873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Harley KG, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res. 2013;126:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Evans SF, et al. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology. 2014;45:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Perera F, et al. Bisphenol A exposure and symptoms of anxiety and depression among inner city children at 10–12 years of age. Environ Res. 2016;151:195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Braun JM, et al. Prenatal environmental chemical exposures and longitudinal patterns of child neurobehavior. Neurotoxicology. 2017;62:192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen A, et al. Prenatal polybrominated diphenyl ether exposures and neurodevelopment in U.S. children through 5 years of age: the HOME study. Environ Health Perspect. 2014;122(8):856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eskenazi B, et al. In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ Health Perspect. 2013;121(2):257–62.

    Article  PubMed  CAS  Google Scholar 

  103. Herbstman JB, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect. 2010;118(5):712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sagiv SK, et al. Prenatal and childhood polybrominated diphenyl ether (PBDE) exposure and attention and executive function at 9–12 years of age. Neurotoxicol Teratol. 2015;52(Pt B):151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Forns J, et al. Prenatal exposure to polychlorinated biphenyls and child neuropsychological development in 4-year-olds: an analysis per congener and specific cognitive domain. Sci Total Environ. 2012;432:338–43.

    Article  CAS  PubMed  Google Scholar 

  106. Sagiv SK, et al. Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol. 2010;171(5):593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Stewart PW, et al. The relationship between prenatal PCB exposure and intelligence (IQ) in 9-year-old children. Environ Health Perspect. 2008;116(10):1416–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kyriklaki A, et al. Prenatal exposure to persistent organic pollutants in association with offspring neuropsychological development at 4years of age: the Rhea mother-child cohort, Crete, Greece. Environ Int. 2016;97:204–11.

    Article  CAS  PubMed  Google Scholar 

  109. Kim S, et al. Association between maternal exposure to major phthalates, heavy metals, and persistent organic pollutants, and the neurodevelopmental performances of their children at 1 to 2years of age- CHECK cohort study. Sci Total Environ. 2018;624:377–84.

    Article  CAS  PubMed  Google Scholar 

  110. Arbuckle TE, et al. Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–11 years of age: CHMS 2007–2009. Neurotoxicology. 2016;54:89–98.

    Article  CAS  PubMed  Google Scholar 

  111. Whyatt RM, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ Health Perspect. 2012;120(2):290–5.

    Article  CAS  PubMed  Google Scholar 

  112. Kobrosly RW, et al. Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6–10 years of age. Environ Health Perspect. 2014;122(5):521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Olesen TS, et al. Prenatal phthalate exposure and language development in toddlers from the Odense Child Cohort. Neurotoxicol Teratol. 2018;65:34–41.

    Article  CAS  PubMed  Google Scholar 

  114. Kim Y, et al. Prenatal exposure to phthalates and infant development at 6 months: prospective Mothers and Children’s Environmental Health (MOCEH) study. Environ Health Perspect. 2011;119(10):1495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lien YJ, et al. Prenatal exposure to phthalate esters and behavioral syndromes in children at 8 years of age: Taiwan Maternal and Infant Cohort Study. Environ Health Perspect. 2015;123(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  116. Factor-Litvak P, et al. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS One. 2014;9(12):e114003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Engel SM, et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect. 2010;118(4):565–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Engel SM, et al. Prenatal phthalates, maternal thyroid function, and risk of attention-deficit hyperactivity disorder in the Norwegian mother and child cohort. Environ Health Perspect. 2018;126(5):057004.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wolstenholme JT, Rissman EF, Connelly JJ. The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm Behav. 2011;59(3):296–305.

    Article  CAS  PubMed  Google Scholar 

  120. Rebuli ME, Patisaul HB. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol. 2016;160:148–59.

    Article  CAS  PubMed  Google Scholar 

  121. Birgersson L, et al. From cohorts to molecules: adverse impacts of endocrine disrupting mixtures. Deposited as preprint on BioRxiv 2017. https://doi.org/10.1101/206664

  122. Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018;8(2):e00920.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab. 2007;3(3):249–59.

    Article  CAS  PubMed  Google Scholar 

  124. Willoughby KA, McAndrews MP, Rovet JF. Effects of maternal hypothyroidism on offspring hippocampus and memory. Thyroid. 2014;24(3):576–84.

    Article  CAS  PubMed  Google Scholar 

  125. Haddow JE, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341(8):549–55.

    Article  CAS  PubMed  Google Scholar 

  126. Pop VJ, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Oxf). 1999;50(2):149–55.

    Article  CAS  Google Scholar 

  127. Korevaar TI, et al. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  128. Ghassabian A, Trasande L. Disruption in thyroid signaling pathway: a mechanism for the effect of endocrine-disrupting chemicals on child neurodevelopment. Front Endocrinol (Lausanne). 2018;9:204.

    Article  Google Scholar 

  129. Bowers JM, Waddell J, McCarthy MM. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ. 2010;1(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Luine V, Frankfurt M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience. 2013;239:34–45.

    Article  CAS  PubMed  Google Scholar 

  131. Wang L, et al. Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain. Proc Natl Acad Sci USA. 2003;100(2):703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu SB, Zhao MG. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors. Brain Res Bull. 2013;93:27–31.

    Article  CAS  PubMed  Google Scholar 

  133. Baez MV, Cercato MC, Jerusalinsky DA. NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast. 2018;2018:5093048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Xu X, et al. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice. Horm Behav. 2013;63(5):766–75.

    Article  CAS  PubMed  Google Scholar 

  135. Xu XH, et al. Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-D-aspartate receptors of hippocampus in male offspring mice. Horm Behav. 2010;58(2):326–33.

    Article  CAS  PubMed  Google Scholar 

  136. Alavian-Ghavanini A, et al. Prenatal bisphenol A exposure is linked to epigenetic changes in glutamate receptor subunit gene Grin2b in female rats and humans. Sci Rep. 2018;8(1):11315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Dorval KM, et al. Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav. 2007;6(5):444–52.

    Article  CAS  PubMed  Google Scholar 

  138. Hu C, et al. Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci. 2016;132(2):115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rochester JR, Bolden AL, Kwiatkowski CF. Prenatal exposure to bisphenol A and hyperactivity in children: a systematic review and meta-analysis. Environ Int. 2018;114:343–56.

    Article  CAS  PubMed  Google Scholar 

  140. Boulle F, et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry. 2012;17(6):584–96.

    Article  CAS  PubMed  Google Scholar 

  141. Kundakovic M, et al. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci USA. 2015;112(22):6807–13.

    Article  CAS  PubMed  Google Scholar 

  142. Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol, 2010. 61: 81–109, C1–11.

    Article  PubMed  Google Scholar 

  143. Matosin N, Halldorsdottir T, Binder EB. Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: the FKBP5 model. Biol Psychiatry. 2018;83(10):821–30.

    Article  CAS  PubMed  Google Scholar 

  144. Kitraki E, et al. Developmental exposure to bisphenol A alters expression and DNA methylation of Fkbp5, an important regulator of the stress response. Mol Cell Endocrinol. 2015;417:191–9.

    Article  CAS  PubMed  Google Scholar 

  145. Flegal KM, et al. Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord. 1998;22(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  146. Hamrik Z, et al. Trends in overweight and obesity in Czech Schoolchildren from 1998 to 2014. Cent Eur J Public Health. 2017;25(Suppl 1):S10–4.

    Article  PubMed  Google Scholar 

  147. Fang M. Trends in the prevalence of diabetes among U.S. adults: 1999–2016. Am J Prev Med. 2018;55(4)

    Article  PubMed  Google Scholar 

  148. Thomas MC, et al. Evidence of an accelerating increase in prevalence of diagnosed Type 2 diabetes in British men, 1978–2005. Diabet Med. 2009;26(8):766–72.

    Article  CAS  PubMed  Google Scholar 

  149. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8(2):185–92.

    Article  PubMed  Google Scholar 

  150. Neel BA, Sargis RM. The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes. 2011;60(7):1838–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Spalding KL, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

    Article  CAS  PubMed  Google Scholar 

  152. Heindel JJ, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33.

    Article  CAS  PubMed  Google Scholar 

  153. Braun JM, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: the HOME study. Obesity (Silver Spring). 2016;24(1):231–7.

    Article  CAS  Google Scholar 

  154. Halldorsson TI, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ Health Perspect. 2012;120(5):668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Johnson PI, et al. The Navigation Guide – evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1028–39.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Maisonet M, et al. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect. 2012;120(10):1432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mora AM, et al. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid-childhood. Environ Health Perspect. 2017;125(3):467–73.

    Article  CAS  PubMed  Google Scholar 

  158. Lenters V, et al. Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: multi-pollutant models based on elastic net regression. Environ Health Perspect. 2016;124(3):365–72.

    Article  CAS  PubMed  Google Scholar 

  159. Harley KG, et al. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ Health Perspect. 2013;121(4):514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vafeiadi M, et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ Res. 2016;146:379–87.

    Article  CAS  PubMed  Google Scholar 

  161. Valvi D, et al. Prenatal bisphenol a urine concentrations and early rapid growth and overweight risk in the offspring. Epidemiology. 2013;24(6):791–9.

    Article  PubMed  Google Scholar 

  162. Hoepner LA, et al. Bisphenol A and adiposity in an inner-city birth cohort. Environ Health Perspect. 2016;124(10):1644–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yang TC, et al. Bisphenol A and phthalates in utero and in childhood: association with child BMI z-score and adiposity. Environ Res. 2017;156:326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Agay-Shay K, et al. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect. 2015;123(10):1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Govarts E, et al. Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts. Environ Health Perspect. 2012;120(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  166. Maresca MM, et al. Prenatal exposure to phthalates and childhood body size in an urban cohort. Environ Health Perspect. 2016;124(4):514–20.

    Article  CAS  PubMed  Google Scholar 

  167. Valvi D, et al. Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: a prospective birth cohort study. Environ Health Perspect. 2012;120(3):451–7.

    Article  CAS  PubMed  Google Scholar 

  168. Casas M, et al. Prenatal exposure to PCB-153, p,p’-DDE and birth outcomes in 9000 mother-child pairs: exposure-response relationship and effect modifiers. Environ Int. 2015;74:23–31.

    Article  CAS  PubMed  Google Scholar 

  169. Kopec G, Shekhawat PS, Mhanna MJ. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes. 2017;10:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Alonso-Magdalena P, Quesada I, Nadal A. Prenatal exposure to BPA and offspring outcomes: the diabesogenic behavior of BPA. Dose Response. 2015;13(2):1559325815590395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Yamamoto J, et al. Perfluorooctanoic acid binds to peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation in 3T3-L1 adipocytes. Biosci Biotechnol Biochem. 2015;79(4):636–9.

    Article  CAS  PubMed  Google Scholar 

  172. Ghanipoor-Samami M, et al. Atlas of tissue- and developmental stage specific gene expression for the bovine insulin-like growth factor (IGF) system. PLoS One. 2018;13(7):e0200466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kobayashi S, et al. Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: the Hokkaido study. J Expo Sci Environ Epidemiol. 2017;27(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  174. Remy S, et al. Metabolic targets of endocrine disrupting chemicals assessed by cord blood transcriptome profiling. Reprod Toxicol. 2016;65:307–20.

    Article  CAS  PubMed  Google Scholar 

  175. Xu Y, Lopez M. Central regulation of energy metabolism by estrogens. Mol Metab. 2018;15:104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Junge KM, et al. MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin Epigenetics. 2018;10:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Ohlstein JF, et al. Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells. J Mol Endocrinol. 2014;53(3):345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dong H, et al. Non-cytotoxic nanomolar concentrations of bisphenol A induce human mesenchymal stem cell adipogenesis and osteogenesis. Ecotoxicol Environ Saf. 2018;164:448–54.

    Article  CAS  PubMed  Google Scholar 

  179. Takahashi M, Kamei Y, Ezaki O. Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab. 2005;288(1):E117–24.

    Article  CAS  PubMed  Google Scholar 

  180. Taylor JA, et al. Prenatal exposure to bisphenol A disrupts naturally occurring bimodal DNA methylation at proximal promoter of fggy, an obesity-relevant gene encoding a carbohydrate kinase, in Gonadal White Adipose Tissues of CD-1 mice. Endocrinology. 2018;159(2):779–94.

    Article  CAS  PubMed  Google Scholar 

  181. Wei J, et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology. 2011;152(8):3049–61.

    Article  CAS  PubMed  Google Scholar 

  182. Mackay H, et al. Organizational effects of perinatal exposure to bisphenol-A and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice. Endocrinology. 2013;154(4):1465–75.

    Article  CAS  PubMed  Google Scholar 

  183. Angle BM, et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol. 2013;42:256–68.

    Article  CAS  PubMed  Google Scholar 

  184. Huo D, et al. Incidence rates and risks of diethylstilbestrol-related clear-cell adenocarcinoma of the vagina and cervix: update after 40-year follow-up. Gynecol Oncol. 2017;146(3):566–71.

    Article  CAS  PubMed  Google Scholar 

  185. Hilakivi-Clarke L. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res. 2014;16(2):208.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Troisi R, et al. Medical conditions among adult offspring prenatally exposed to diethylstilbestrol. Epidemiology. 2013;24(3):430–8.

    Article  PubMed  Google Scholar 

  187. Stelmach I, et al. The effect of prenatal exposure to phthalates on food allergy and early eczema in inner-city children. Allergy Asthma Proc. 2015;36(4):72–8.

    Article  PubMed  Google Scholar 

  188. Buckley JP, et al. Associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic diseases among children aged 6 and 7years. Environ Int. 2018;115:79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jahreis S, et al. Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol. 2018;141(2):741–53.

    Article  CAS  PubMed  Google Scholar 

  190. Gascon M, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015;135(2):370–8.

    Article  CAS  PubMed  Google Scholar 

  191. Shu H, et al. PVC flooring at home and development of asthma among young children in Sweden, a 10-year follow-up. Indoor Air. 2014;24(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  192. Attina TM, et al. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016;4(12):996–1003.

    Article  PubMed  Google Scholar 

  193. Legler J, et al. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015;100(4):1278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Trasande L, et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis. Andrology. 2016;4(4):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Liew Z, et al. Prenatal exposure to perfluoroalkyl substances and IQ scores at age 5; a study in the Danish National Birth Cohort. Environ Health Perspect. 2018;126(6):067004.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Carlsen E, et al. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Weintraub K. The prevalence puzzle: autism counts. Nature. 2011;479:22–4.

    Article  CAS  PubMed  Google Scholar 

  198. Demeneix B. Losing our minds: how environmental pollution impairs human intelligence and mental health (Oxford Series in Behavioral Neuroendocrinology). 1 ed. 2014: Oxford University Press.

    Google Scholar 

  199. OECD. Overweight or obese population (indicator). 05 September 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elin Engdahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Engdahl, E., Rüegg, J. (2020). Prenatal Exposure to Endocrine Disrupting Chemicals and Their Effect on Health Later in Life. In: Teperino, R. (eds) Beyond Our Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-35213-4_4

Download citation

Publish with us

Policies and ethics