Skip to main content

Bundle Methods for Nonsmooth DC Optimization

  • Chapter
  • First Online:
Numerical Nonsmooth Optimization

Abstract

This chapter is devoted to algorithms for solving nonsmooth unconstrained difference of convex optimization problems. Different types of stationarity conditions are discussed and the relationship between sets of different stationary points (critical, Clarke stationary and inf-stationary) is established. Bundle methods are developed based on a nonconvex piecewise linear model of the objective function and the convergence of these methods is studied. Numerical results are presented to demonstrate the performance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, A.A., Hall, G.: DC decomposition of nonconvex polynomials with algebraic techniques. Math. Program. 169(1), 69–94 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bagirov, A.M.: A method for minimization of quasidifferentiable functions. Optim. Methods Softw. 17(1), 31–60 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bagirov, A.M., Ugon, J.: Codifferential method for minimizing nonsmooth DC functions. J. Global Optim. 50(1), 3–22 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bagirov A.M., Ugon, J.: Nonsmooth DC programming approach to clusterwise linear regression: optimality conditions and algorithms. Optim. Methods Softw. 33(1), 194–219 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham, Heidelberg (2014)

    Google Scholar 

  6. Bagirov, A.M., Taheri, S., Ugon, J.: Nonsmooth DC programming approach to the minimum sum-of-squares clustering problems. Pattern Recognit. 53(1), 12–24 (2016)

    Article  Google Scholar 

  7. Bagirov, A.M., Taheri, S., Asadi, S.: A difference of convex optimization algorithm for piecewise linear regression. J. Ind. Manag. Optim. 15(2), 909–932 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  9. Cui, Y., Pang, J.-S., Sen, B.: Composite difference-max programs for modern statistical estimation problems. SIAM J. Optim. 28(4), 3344–3374 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  11. Ferrer, A.: Representation of a polynomial function as a difference of convex polynomials, with an application. In: Hadjisavvas, N., Martínez-Legaz, J.E., Penot, J.P. (eds.) Generalized Convexity and Generalized Monotonicity, vol. 502, pp. 189–207. Springer, Berlin (2001)

    Chapter  Google Scholar 

  12. Ferrer, A., Martínez-Legaz, J.E.: Improving the efficiency of DC global optimization methods by improving the DC representation of the objective function. J. Global Optim. 43(4), 513–531 (2009)

    Article  MathSciNet  Google Scholar 

  13. Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Softw. 19(1), 89–102 (2004)

    Article  MathSciNet  Google Scholar 

  14. Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14(3), 743–756 (2004)

    Article  MathSciNet  Google Scholar 

  15. Fuduli, A., Gaudioso, M., Nurminski, E.A.: A splitting bundle approach for non-smooth non-convex minimization. Optimization 64(5), 1131–1151 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Global Optim. 71(1), 37–55 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hiriart-Urruty, J-.B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Ponstein, J. (ed.) Convexity and Duality in Optimization, vol. 256, pp. 37–70. Springer, Berlin (1985)

    Google Scholar 

  18. Hiriart-Urruty, J.-B.: From convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimality. In: Clarke, F.H., Dem’yanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, Ettore Majorana International Sciences Series 43, pp. 219–239. Springer, Boston (1989)

    Chapter  Google Scholar 

  19. Hou, L., Sun, W.: On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization. Optim. Methods Softw. 23(2), 227–235 (2008)

    Article  MathSciNet  Google Scholar 

  20. Joki, K.: Bundle methods in nonsmooth DC optimization. PhD thesis, University of Turku (2018)

    Google Scholar 

  21. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J. Global Optim. 68(3), 501–535 (2017)

    Article  MathSciNet  Google Scholar 

  22. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for nonsmooth DC optimization. TUCS Technical Report No. 1173, Turku Centre for Computer Science, Turku (2017)

    Google Scholar 

  23. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46(1–3), 105–122 (1990)

    Article  MathSciNet  Google Scholar 

  25. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Global Optim. 11(3), 253–285 (1997)

    Google Scholar 

  26. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1–4), 23–46 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Le Thi, H.A., Pham Dinh, T.: Difference of convex functions algorithms (DCA) for image restoration via a Markov random field model. Optim. Eng. 18(4), 873–906 (2017)

    Article  MathSciNet  Google Scholar 

  28. Mäkelä, M.M.: Survey of bundle methods for nonsmooth optimization. Optim. Methods Softw. 17(1), 1–29 (2002)

    Article  MathSciNet  Google Scholar 

  29. Mäkelä, M.M.: Multiobjective proximal bundle method for nonconvex nonsmooth optimization: Fortran subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology, Series B. Scientific Computing B 13/2003, University of Jyväskylä, Jyväskylä (2003)

    Google Scholar 

  30. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific, Singapore (1992)

    Book  Google Scholar 

  31. Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Global Optim. (2019). https://doi.org/10.1007/s10898-019-00755-4

  32. Pang, J.-S., Tao, M.: Decomposition methods for computing directional stationary solutions of a class of nonsmooth nonconvex optimization problems. SIAM J. Optim. 28(2), 1640–1669 (2018)

    Article  MathSciNet  Google Scholar 

  33. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

    Google Scholar 

  34. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)

    Article  MathSciNet  Google Scholar 

  35. Souza, J.C.O., Oliveira, P.R., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of convex functions. Optim. Lett. 10(7), 1529–1539 (2016)

    Article  MathSciNet  Google Scholar 

  36. Toland, J.F.: On subdifferential calculus and duality in nonconvex optimization. Memoires de la Société Mathématique de France 60, 177–183 (1979)

    Article  MathSciNet  Google Scholar 

  37. Tuy, H.: Convex Analysis and Global Optimization, 1st edn. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University of Turku, the Academy of Finland (Projects 294002 and 319274) and the Australian Government through the Australian Research Council’s Discovery funding scheme (Project No. DP190100580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisa Joki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joki, K., Bagirov, A.M. (2020). Bundle Methods for Nonsmooth DC Optimization. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds) Numerical Nonsmooth Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-34910-3_8

Download citation

Publish with us

Policies and ethics