Skip to main content

Tellurium, the Forgotten Element: A Review of the Properties, Processes, and Biomedical Applications of the Bulk and Nanoscale Metalloid

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Tellurium (Te) is a brittle, mildly toxic, and rare metalloid with an extremely low abundance in the planet. The element has been used in both its bulk and nanoscale forms for several applications in solar cell industry, semiconductors, catalysis, or heavy metal removal, among others. The end of the last century witnessed an explosion in new strategies for synthesizing different Te nanostructures with controlled compositions, sizes, morphologies, and properties, which allow these structures to enhance their impact in numerous applications. Nanomedicine has recently taken advantage of the metalloid in its nanoscale, showing promising applications as antibacterial, anticancer, and imaging agents. Nevertheless, the biological role of Te within living organisms remains mostly unknown, and just a few reports appear working on this matter. In this chapter, the forgotten elements are extensively studied in terms of its chemical, physical, and geological properties, and its main applications are summarized and studied for both bulk and nanosized tellurium. At the end, tellurium’s most important biomedical applications are presented with the aim to establish a general concept of the metalloid as a powerful biomedical tool with a bright future yet to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CRC handbook of chemistry and physics (1977) CRC Press, Cleaveland

    Google Scholar 

  2. Bouroushian M (2010) Electrochemistry of the chalcogens. Springer, Berlin, pp 57–75. https://doi.org/10.1007/978-3-642-03967-6_2

    Book  Google Scholar 

  3. Chivers T, Laitinen RS (2015) Tellurium: a maverick among the chalcogens. Chem Soc Rev 44(7):1725–1739. https://doi.org/10.1039/c4cs00434e

    Article  CAS  PubMed  Google Scholar 

  4. Frieden E (1972) The chemical elements of life. Sci Am 227(1):52–60. http://www.ncbi.nlm.nih.gov/pubmed/5044408

    Article  CAS  Google Scholar 

  5. Dobbin L (1900) A handbook of physics and chemistry. Edinb Med J 7(1):67. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260252/

    PubMed Central  Google Scholar 

  6. Szabadváry F (1997) Neue Deutsche Biographie, Band 18. https://www.deutsche-biographie.de/pnd134201868.html#ndbcontent

  7. Cambridge University Press (1909) Encyclopædia Britannica, 11th edn. https://www.britannica.com/topic/Encyclopaedia-Britannica-English-language-reference-work/Eleventh-edition-and-its-supplements

  8. Nicholson W (ed.) (1802) Journal of Natural Philosophy, Chemistry and the Arts. In: vol. III. https://books.google.com/books?id=aAgAAAAAMAAJ&pg=PR15&lpg=PR15&dq=%22Abstract+of+a+Memoir+of+Klaproth+on+a+New+Metal+Denominated+Tellurium&source=bl&ots=b3BmzfsbN3&sig=ACfU3U2Bh_9bv-skhWWaOjaJPuAK4YMSHg&hl=en&sa=X&ved=2ahUKEwirwbXRiZ7gAhWEd98KHYBwCLgQ6AE

  9. Lukács D (1977) [Pál Kitaibel]. Orv Hetil 118(44):2660–62. http://www.ncbi.nlm.nih.gov/pubmed/335328

  10. Rouvray DH (2004) Elements in the history of the periodic table. Endeavour 28(2):69–74. https://doi.org/10.1016/j.endeavour.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Ba LA, Döring M, Jamier V, Jacob C (2010) Tellurium: an element with great biological potency and potential. Org Biomol Chem 8(19):4203–4216. https://doi.org/10.1039/c0Ob00086h

    Article  CAS  PubMed  Google Scholar 

  12. Woollins JD, Laitinen R (eds) (2011) Selenium and tellurium chemistry. Springer, Berlin. https://doi.org/10.1007/978-3-642-20699-3

    Book  Google Scholar 

  13. Zajacite-(Ce) mineral data. 2019. http://webmineral.com/data/Zajacite-(Ce).shtml#.XGLr1TNKiUk

  14. Minerals Information Center, National (2017) Mineral commodity summaries. https://minerals.usgs.gov/minerals/pubs/mcs/2017/mcs2017.pdf. Accessed 2 Feb 2019

  15. Rosing MT (2008) On the evolution of minerals. Nature 456(7221):456–458. https://doi.org/10.1038/456456a

    Article  CAS  PubMed  Google Scholar 

  16. Survey, U.S. Geological (2018) Minerals yearbook. In: Minerals yearbook, vol III. https://doi.org/10.3133/MYBVIII

  17. Tian P, Xu X, Ao C, Ding D, Li W, Si R, Tu W, Xu J, Han Y-F (2017) Direct and selective synthesis of hydrogen peroxide over palladium-tellurium catalysts at ambient pressure. ChemSusChem 10(17):3342–3346. https://doi.org/10.1002/cssc.201701238

    Article  CAS  PubMed  Google Scholar 

  18. Zhou T, Zhu Z, Liu X, Liang Z, Wang X (2018) A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics. Micromachines 9(7):337. https://doi.org/10.3390/mi9070337

    Article  PubMed Central  Google Scholar 

  19. Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, La Mattina F, Blösch P et al (2013) Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat Commun 4(1):2306. https://doi.org/10.1038/ncomms3306

    Article  CAS  PubMed  Google Scholar 

  20. Daniel-Hoffmann M, Sredni B, Nitzan Y (2012) Bactericidal activity of the organo-tellurium compound AS101 against Enterobacter Cloacae. J Antimicrob Chemother 67(9):2165–2172. https://doi.org/10.1093/jac/dks185

    Article  CAS  PubMed  Google Scholar 

  21. Mohanty P, Park J, Kim B (2006a) Large scale synthesis of highly pure single crystalline tellurium nanowires by thermal evaporation method. J Nanosci Nanotechnol 6(11):3380–3383. http://www.ncbi.nlm.nih.gov/pubmed/17252770

    Article  CAS  Google Scholar 

  22. Mohanty P, Kang T, Kim B, Park J (2006b) Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections. J Phys Chem B 110(2):791–795. https://doi.org/10.1021/JP0551364

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y-J, Wang W-W, Qi R-J, Hu X-L (2004) Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed 43(11):1410–1414. https://doi.org/10.1002/anie.200353101

    Article  CAS  Google Scholar 

  24. ESPI Metals (2019) Espimetals—tellurium. http://www.espimetals.com/index.php/technical-data/253-tellurium

  25. The Merck index online—chemicals, drugs and biologicals. 2019. https://www.rsc.org/merck-index

  26. Johnstone AH (2007) CRC handbook of chemistry and physics-69th edition editor in chief R. C. Weast, CRC Press Inc., Boca Raton, Florida, 1988, Pp. 2400, Price £57.50. ISBN 0-8493-0369-5. J Chem Technol Biotechnol 50(2):294–295. https://doi.org/10.1002/jctb.280500215

    Article  Google Scholar 

  27. Lin S, Li W, Chen Z, Shen J, Ge B, Pei Y (2016) Tellurium as a high-performance elemental thermoelectric. Nat Commun 7(1):10287. https://doi.org/10.1038/ncomms10287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhan L, Xu Z (2014) State-of-the-art of recycling E-wastes by vacuum metallurgy separation. Environ Sci Technol 48(24):14092–14102. https://doi.org/10.1021/es5030383

    Article  CAS  PubMed  Google Scholar 

  29. Ollivier PRL, Bahrou AS, Marcus S, Cox T, Church TM, Hanson TE (2008) Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes. Appl Environ Microbiol 74(23):7163–7173. https://doi.org/10.1128/AEM.00733-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dirmyer MR, Martin J, Nolas GS, Sen A, Badding JV (2009) Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 5(8):933–937. https://doi.org/10.1002/smll.200801206

    Article  CAS  PubMed  Google Scholar 

  31. Nyk J, Onderka B (2012) Thermodynamics of oxygen in dilute liquid silver–tellurium alloys. Monatsh Chem 143(9):1219–1224. https://doi.org/10.1007/s00706-012-0771-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang T, Ke H, Wang Q, Tang Y’a, Deng Y, Yang H, Yang X et al (2017a) Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano 11(10):10012–10024. https://doi.org/10.1021/acsnano.7b04230

    Article  CAS  PubMed  Google Scholar 

  33. Fritzsche H (1952) Interpretation of the double reversal of the hall effect in tellurium. Science 115(2995):571–572. https://doi.org/10.1126/science.115.2995.571.

    Article  CAS  PubMed  Google Scholar 

  34. Otjacques C, Raty J-Y, Coulet M-V, Johnson M, Schober H, Bichara C, Gaspard J-P (2009) Dynamics of the negative thermal expansion in tellurium based liquid alloys. Phys Rev Lett 103(24):245901. https://doi.org/10.1103/PhysRevLett.103.245901

    Article  CAS  PubMed  Google Scholar 

  35. Churchill HOH, Salamo GJ, Yu S-Q, Hironaka T, Hu X, Stacy J, Shih I (2017) Toward single atom chains with exfoliated tellurium. Nanoscale Res Lett 12(1):488. https://doi.org/10.1186/s11671-017-2255-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bijelic A, Rompel A (2017) Ten good reasons for the use of the tellurium-centered Anderson–Evans polyoxotungstate in protein crystallography. Acc Chem Res 50(6):1441–1448. https://doi.org/10.1021/acs.accounts.7b00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harrison WTA, Johnston MG, IUCr (2014) Crystal structure of ammonium divanadium (IV,V) tellurium(IV) heptaoxide. Acta Cryst 70(7):27–30. https://doi.org/10.1107/S1600536814011015

    Article  CAS  Google Scholar 

  38. Brown PJ, Forsyth JB, IUCr (1996) The crystal structure and optical activity of tellurium. Acta Cryst 52(3):408–412. https://doi.org/10.1107/S0108767395017144

    Article  Google Scholar 

  39. Myers JP, Fronczek FR, Junk T (2016) The first crystal structures of six- and seven-membered tellurium- and nitrogen-containing (Te—N) heterocycles: 2 H -1,4-benzotellurazin-3(4 H )-one and 2,3-dihydro-1,5-benzotellurazepin-4(5 H)-one. Acta Cryst 72(1):1–5. https://doi.org/10.1107/S2053229615022378

    Article  CAS  Google Scholar 

  40. Bloomer WD, McLaughlin WH, Neirinckx RD, Adelstein SJ, Gordon PR, Ruth TJ, Wolf AP (1981) Astatine-211—tellurium radiocolloid cures experimental malignant ascites. Science 212(4492):340–341. http://www.ncbi.nlm.nih.gov/pubmed/7209534.

    Article  CAS  Google Scholar 

  41. Ma C, Yan J, Huang Y, Wang C, Yang G (2018) The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Sci Adv 4(8):eaas9894. https://doi.org/10.1126/sciadv.aas9894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pugin B, Cornejo FA, Muñoz-Díaz P, Muñoz-Villagrán CM, Vargas-Pérez JI, Arenas FA, Vásquez CC (2014) Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties. Appl Environ Microbiol 80(22):7061–7070. https://doi.org/10.1128/AEM.02207-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Z, Hu Z, Liang J, Li S, Yang Y, Peng S, Qian Y (2004) Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20(1):214–218. https://doi.org/10.1021/LA035160D

    Article  CAS  PubMed  Google Scholar 

  44. Graf C, Assoud A, Mayasree O, Kleinke H (2009) Solid state polyselenides and polytellurides: a large variety of Se–Se and Te–Te interactions. Molecules 14(9):3115–3131. https://doi.org/10.3390/molecules14093115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ogra Y, Kobayashi R, Ishiwata K, Suzuki KT (2008) Comparison of distribution and metabolism between tellurium and selenium in rats. J Inorg Biochem 102(7):1507–1513. https://doi.org/10.1016/j.jinorgbio.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  46. Cabri LJ (1965) Phase relations in the Au-Ag-Te systems and their mineralogical significance. Econ Geol 60(8):1569–1606. https://doi.org/10.2113/gsecongeo.60.8.1569

    Article  CAS  Google Scholar 

  47. Zhang Q, Malliakas CD, Kanatzidis MG (2009) {[Ga(En) 3] 2 (Ge 2 Te 15)} n: a polymeric semiconducting polytelluride with boat-shaped Te 8 4− rings and cross-shaped Te 5 6− units. Inorg Chem 48(23):10910–10912. https://doi.org/10.1021/ic9019074

    Article  CAS  PubMed  Google Scholar 

  48. Dana JD, Dana ES, Gaines RV, Dana JD (1997) Dana’s new mineralogy : the system of mineralogy of James Dwight Dana and Edward Salisbury Dana. Wiley, Hoboken. http://webmineral.com/danaclass.shtml#.XFYjLlxKiUk

    Google Scholar 

  49. Getman FH (1933) A study of the tellurium electrode. Trans Electrochem Soc 64(1):201. https://doi.org/10.1149/1.3504515

    Article  Google Scholar 

  50. Lid DR (2006) CRC handbook of chemistry and physics. American Chemical Society, Boca Raton. https://doi.org/10.1021/JA069813Z

    Book  Google Scholar 

  51. Bruère MA (1891) Direct action of hydrogen sulphide, hydrogen selenide, and hydrogen telluride on haemoglobin. J Anat Physiol 26(Pt 1):62–75. http://www.ncbi.nlm.nih.gov/pubmed/17231959.

    PubMed  PubMed Central  Google Scholar 

  52. Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York. https://books.google.com/books/about/Handbook_of_Inorganic_Chemicals.html?id=Xqj-TTzkvTEC

    Google Scholar 

  53. Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Butterworth-Heinemann, Oxford

    Google Scholar 

  54. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (n.d.) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  55. Mikhaylov AA, Medvedev AG, Churakov AV, Grishanov DA, Prikhodchenko PV, Lev O (2016) Peroxide coordination of tellurium in aqueous solutions. Chem Eur J 22(9):2980–2986. https://doi.org/10.1002/chem.201503614

    Article  CAS  PubMed  Google Scholar 

  56. Laitinen RS, Maaninen A, Pietikäinen J (1998) Selenium- and tellurium-containing chalcogen nitrides. Phosphorus Sulfur Silicon Relat Elem 136(1):397–412. https://doi.org/10.1080/10426509808545966

    Article  Google Scholar 

  57. Massa W, Lau C, Möhlen M, Neumüller B, Dehnicke K (1998) [Te6N8(TeCl4)4]—tellurium nitride stabilized by tellurium tetrachloride. Angew Chem Int Ed 37(20):2840–2842. https://doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2840::AID-ANIE2840>3.0.CO;2-N

    Article  CAS  Google Scholar 

  58. Eagleson M (1994) Concise encyclopedia chemistry. Walter de Gruyter, Berlin. https://books.google.com/books/about/Concise_Encyclopedia_Chemistry.html?id=Owuv-c9L_IMC

    Google Scholar 

  59. Laitinen RS, Oilunkaniemi R (2011) Tellurium: inorganic chemistry based in part on the article tellurium: inorganic chemistry by William R. McWhinnie which appeared in the Encyclopedia of Inorganic Chemistry, First Edition. In: Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, Chichester. https://doi.org/10.1002/9781119951438.eibc0222

    Chapter  Google Scholar 

  60. Wiberg E, Wiberg N, Holleman AF (2001) Inorganic chemistry. Academic Press, San Diego. https://northeastern.on.worldcat.org/search?queryString=no%3A+48056955#/oclc/48056955

    Google Scholar 

  61. Devillanova F, Du Mont W-W (2013) Handbook of chalcogen chemistry, vol 1. Royal Society of Chemistry, Cambridge. https://doi.org/10.1039/9781849737456

    Book  Google Scholar 

  62. Kniep R, Mootz D, Rabenau A (1976) Zur Kenntnis Der Subhalogenide Des Tellurs. Zeitschrift Fr Anorganische Und Allgemeine Chemie 422(1):17–38. https://doi.org/10.1002/zaac.19764220103

    Article  CAS  Google Scholar 

  63. Binnewies M, Milke E (2002) Thermochemical data of elements and compounds. Wiley, Hoboken

    Book  Google Scholar 

  64. Petragnani N, Comasseto JV (1991) Tellurium reagents in organic synthesis; recent advances. Part 1. Synthesis 1991(10):793–817. https://doi.org/10.1055/s-1991-26577

    Article  Google Scholar 

  65. King RB (1977) Inorganic chemistry of the main-group elements. In: Addison CC (ed) Inorganic chemistry of the main-group elements, vol 4. Royal Society of Chemistry, Cambridge. https://doi.org/10.1039/9781847556400

    Chapter  Google Scholar 

  66. Petragnani N (2007) Tellurium in organic synthesis. Academic Press, London

    Book  Google Scholar 

  67. Sadekov ID, Zakharov AV (1999) Stable tellurols and their metal derivatives. Russ Chem Rev 68(11):909–923. https://doi.org/RC990909

    Article  CAS  Google Scholar 

  68. Torubaev Y, Pasynskii A, Mathur P (2012) Organotellurium halides: new ligands for transition metal complexes. Coord Chem Rev 256(5–8):709–721. https://doi.org/10.1016/J.CCR.2011.11.011

    Article  CAS  Google Scholar 

  69. Engman L, Kandra T, Gallegos A, Williams R, Powis G (2000) Water-soluble organotellurium compounds inhibit thioredoxin reductase and the growth of human cancer cells. Anticancer Drug Des 15(5):323–330. http://www.ncbi.nlm.nih.gov/pubmed/11354308

    CAS  PubMed  Google Scholar 

  70. Alessandrello A, Arnaboldi C, Brofferio C, Capelli S, Cremonesi O, Fiorini E, Nucciotti A, et al (2002) New limits on naturally occurring electron capture of 123Te. https://doi.org/10.1103/PhysRevC.67.014323

  71. Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE et al (2016) Atomic weights of the elements 2013 (IUPAC technical report). Pure Appl Chem 88(3):265–291. https://doi.org/10.1515/pac-2015-0305

    Article  CAS  Google Scholar 

  72. Magill J (2003) The universal nuclide chart. In: Nuclides.Net. Springer, Berlin, pp 197–207. https://doi.org/10.1007/978-3-642-55764-4_9.

    Chapter  Google Scholar 

  73. Kim S, Thiessen PA, Bolton EE, Chen J, Gang F, Gindulyte A, Han L et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  74. Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U (2015) Structural and photoconductivity properties of tellurium/PMMA films. Nanoscale Res Lett 10(1):313. https://doi.org/10.1186/s11671-015-1007-z.

    Article  PubMed Central  Google Scholar 

  75. Makuei FM, Senanayake G (2018) Extraction of tellurium from lead and copper bearing feed materials and interim metallurgical products—a short review. Miner Eng 115:79–87. https://doi.org/10.1016/J.MINENG.2017.10.013.

    Article  CAS  Google Scholar 

  76. Wang S (2011) Tellurium, its resourcefulness and recovery. JOM 63(8):90–93. https://doi.org/10.1007/s11837-011-0146-7

    Article  CAS  Google Scholar 

  77. Ramos-Ruiz A, Field JA, Wilkening JV, Sierra-Alvarez R (2016) Recovery of elemental tellurium nanoparticles by the reduction of tellurium oxyanions in a methanogenic microbial consortium. Environ Sci Technol 50(3):1492–1500. https://doi.org/10.1021/acs.est.5b04074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hait J, Jana RK, Kumar V, Sanyal SK (2002) Some studies on sulfuric acid leaching of anode slime with additives. Ind Eng Chem Res 41(25):6593–6599. https://doi.org/10.1021/IE020239J

    Article  CAS  Google Scholar 

  79. Wang S, Cui W, Zhang G, Zhang L, Peng J (2017b) Ultra fast ultrasound-assisted decopperization from copper anode slime. Ultrason Sonochem 36:20–26. https://doi.org/10.1016/J.ULTSONCH.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  80. Yang T, Zhu P, Liu W, Chen L, Zhang D (2017b) Recovery of tin from metal powders of waste printed circuit boards. Waste Manag 68:449–457. https://doi.org/10.1016/j.wasman.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  81. Giles GI, Fry FH, Tasker KM, Holme AL, Peers C, Green KN, Klotz L-O, Sies H, Jacob C (2003a) Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential. Org Biomol Chem 1(23):4317. https://doi.org/10.1039/b308117f

    Article  CAS  PubMed  Google Scholar 

  82. Anne M-L, Keirsse J, Nazabal V, Hyodo K, Inoue S, Boussard-Pledel C, Lhermite H et al (2009) Chalcogenide glass optical waveguides for infrared biosensing. Sensors 9(9):7398–7411. https://doi.org/10.3390/s90907398

    Article  CAS  PubMed  Google Scholar 

  83. Li P, Zhang Y, Chen Z, Gao P, Wu T, Wang L-M (2017) Relaxation dynamics in the strong chalcogenide glass-former of Ge22Se78. Sci Rep 7(1):40547. https://doi.org/10.1038/srep40547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24(46):6125–6135. https://doi.org/10.1002/adma.201202919

    Article  CAS  PubMed  Google Scholar 

  85. Ramos-Ruiz A, Wilkening JV, Field JA, Sierra-Alvarez R (2017) Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. J Hazard Mater 336:57–64. https://doi.org/10.1016/j.jhazmat.2017.04.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M, Yagi T, Tominaga J (2011) Interfacial phase-change memory. Nat Nanotechnol 6(8):501–505. https://doi.org/10.1038/nnano.2011.96

    Article  CAS  PubMed  Google Scholar 

  87. Yuan QL, Yin HY, Nie QL (2013) Nanostructured tellurium semiconductor: from nanoparticles to nanorods. J Exp Nanosci 8(7–8):931–936. https://doi.org/10.1080/17458080.2011.620021

    Article  CAS  Google Scholar 

  88. Ayre J (2013) First solar reports largest quarterly decline in CdTe module cost per-watt since 2007. Solar Love. https://cleantechnica.com/2013/11/07/first-solar-reports-largest-quarterly-decline-cdte-module-cost-per-watt-since-2007/

  89. Todorov TK, Singh S, Bishop DM, Gunawan O, Lee YS, Gershon TS, Brew KW, Antunez PD, Haight R (2017) Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nat Commun 8(1):682. https://doi.org/10.1038/s41467-017-00582-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yarema MC, Curry SC (2005) Acute tellurium toxicity from ingestion of metal-oxidizing solutions. Pediatrics 116(2):e319–e321. https://doi.org/10.1542/peds.2005-0172

    Article  PubMed  Google Scholar 

  91. Yan Y, Zhang J, Ren L, Tang C (2016) Metal-containing and related polymers for biomedical applications. Chem Soc Rev 45(19):5232–5263. https://doi.org/10.1039/c6cs00026f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shieh M, Ho C-H, Sheu W-S, Chen B-G, Chu Y-Y, Miu C-Y, Liu H-L, Shen C-C (2008) Semiconducting tellurium−iron−copper carbonyl polymers. J Am Chem Soc 130(43):14114–14116. https://doi.org/10.1021/ja8065623

    Article  CAS  PubMed  Google Scholar 

  93. Jiang S, Sheng J, Huang Z (2011) Synthesis of the tellurium-derivatized phosphoramidites and their incorporation into DNA oligonucleotides. Curr Protoc Nucleic Acid Chem 1:1.25.1–1.25.16. Hoboken: John Wiley & Sons, Inc. https://doi.org/10.1002/0471142700.nc0125s47.

    Article  Google Scholar 

  94. Maurya D, Sardarinejad A, Alameh K, Maurya DK, Sardarinejad A, Alameh K (2014) Recent developments in R.F. magnetron sputtered thin films for PH sensing applications—an overview. Coatings 4(4):756–771. https://doi.org/10.3390/coatings4040756

    Article  Google Scholar 

  95. Gurunathan S, Kim J-H (2016) Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine 11:1927–1945. https://doi.org/10.2147/IJN.S105264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu J-W, Xu J, Hu W, Yang J-L, Yu S-H (2016) Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2(3):167–170. https://doi.org/10.1002/cnma.201500206

    Article  CAS  Google Scholar 

  97. He W, Krejci A, Lin J, Osmulski ME, Dickerson JH (2011) A facile synthesis of Te nanoparticles with binary size distribution by green chemistry. Nanoscale 3(4):1523. https://doi.org/10.1039/c1nr10025d

    Article  CAS  PubMed  Google Scholar 

  98. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113(1):011301. https://doi.org/10.1063/1.4754271

    Article  CAS  Google Scholar 

  99. Tsai H-W, Yaghoubi A, Chan T-C, Wang C-C, Liu W-T, Liao C-N, Lu S-Y, Chen L-J, Chueh Y-L (2015) Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas–solid transformation and their applications as supercapacitor electrodes for p-Doping of graphene transistors. Nanoscale 7(17):7535–7539. https://doi.org/10.1039/C5NR00876J

    Article  CAS  PubMed  Google Scholar 

  100. Jiang Z-Y, Xie Z-X, Zhang X-H, Xie S-Y, Huang R-B, Zheng L-S (2004) Synthesis of α-tellurium dioxide nanorods from elemental tellurium by laser ablation. Inorg Chem Commun 7(2):179–181. https://doi.org/10.1016/J.INOCHE.2003.10.037

    Article  CAS  Google Scholar 

  101. Arab F, Mousavi-Kamazani M, Salavati-Niasari M (2017) Facile sonochemical synthesis of tellurium and tellurium dioxide nanoparticles: reducing Te(IV) to Te via ultrasonic irradiation in methanol. Ultrason Sonochem 37:335–343. https://doi.org/10.1016/j.ultsonch.2017.01.026

    Article  CAS  PubMed  Google Scholar 

  102. Mousavi-Kamazani M, Rahmatolahzadeh R, Shobeiri SA, Beshkar F (2017) Sonochemical synthesis, formation mechanism, and solar cell application of tellurium nanoparticles. Ultrason Sonochem 39:233–239. https://doi.org/10.1016/J.ULTSONCH.2017.04.031

    Article  CAS  PubMed  Google Scholar 

  103. Zhang A, Zheng G, Lieber CM (2016a) Nanowires. Building blocks for nanoscience and nanotechnology. Springer, Basel. http://www.springer.com/series/3705

    Book  Google Scholar 

  104. Mayers B, Xia Y (2002) One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J Mater Chem 12(6):1875–1881. https://doi.org/10.1039/b201058e

    Article  CAS  Google Scholar 

  105. Qian H-S, Yu S-H, Gong J-Y, Luo L-B, Fei L-f (2006) High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22(8):3830–3835. https://doi.org/10.1021/la053021l

    Article  CAS  PubMed  Google Scholar 

  106. Lu Q, Gao F, Komarneni S (2004) Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv Mater 16(18):1629–1632. https://doi.org/10.1002/adma.200400319

    Article  CAS  Google Scholar 

  107. Huang W, Wu H, Li X, Chen T (2016) Facile one-pot synthesis of tellurium nanorods as antioxidant and anticancer agents. Chem Asian J 11(16):2301–2311. https://doi.org/10.1002/asia.201600757

    Article  CAS  PubMed  Google Scholar 

  108. Xi G, Peng Y, Yu W, Qian Y (2005) Synthesis, characterization, and growth mechanism of tellurium nanotubes. Cryst Growth Des 5(1):325–328. https://doi.org/10.1021/CG049867P

    Article  CAS  Google Scholar 

  109. Song J-M, Lin Y-Z, Zhan Y-J, Tian Y-C, Liu G, Yu S-H (2008) Superlong high-quality tellurium nanotubes: synthesis, characterization, and optical property. Cryst Growth Des 8(6):1902–1908. https://doi.org/10.1021/cg701125k

    Article  CAS  Google Scholar 

  110. Liu T, Zhang G, Su X, Chen X, Wang D, Qin J (2007) Tellurium nanotubes synthesized with microwave-assisted monosaccharide reduction method. J Nanosci Nanotechnol 7(7):2500–2505. http://www.ncbi.nlm.nih.gov/pubmed/17663271

    Article  CAS  Google Scholar 

  111. Qun W, Li G-D, Liu Y-L, Xu S, Wang K-J, Chen J-S (2007) Fabrication and growth mechanism of selenium and tellurium nanobelts through a vacuum vapor deposition route. J Phys Chem C 111(35):12926–12932. https://doi.org/10.1021/JP073902W

    Article  Google Scholar 

  112. Wan B, Hu C, Liu H, Chen X, Xi Y, He X (2010) Glassy state lead tellurite nanobelts: synthesis and properties. Nanoscale Res Lett 5(8):1344–1350. https://doi.org/10.1007/s11671-010-9651-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896.

    Article  CAS  PubMed  Google Scholar 

  114. Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118(13):6409–6455. https://doi.org/10.1021/acs.chemrev.7b00727

    Article  CAS  PubMed  Google Scholar 

  115. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12(7):3507–3511. https://doi.org/10.1021/nl301047g

    Article  CAS  PubMed  Google Scholar 

  116. Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous Germanene layer on Al(111). Nano Lett 15(4):2510–2516. https://doi.org/10.1021/acs.nanolett.5b00085

    Article  CAS  PubMed  Google Scholar 

  117. Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A, Le Lay G (2018) Large area planar stanene epitaxially grown on Ag(1 1 1). 2D Mater 5(2):025002. https://doi.org/10.1088/2053-1583/aa9ea0

    Article  CAS  Google Scholar 

  118. Mannix AJ, Zhou X-F, Kiraly B, Wood JD, Alducin D, Myers BD, Liu X et al (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267):1513–1516. https://doi.org/10.1126/science.aad1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Martínez-Periñán E, Down MP, Gibaja C, Lorenzo E, Zamora F, Banks CE (2018) Antimonene: a novel 2D nanomaterial for supercapacitor applications. Adv Energy Mater 8(11):1702606. https://doi.org/10.1002/aenm.201702606

    Article  CAS  Google Scholar 

  120. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4):4033–4041. https://doi.org/10.1021/nn501226z

    Article  CAS  PubMed  Google Scholar 

  121. Zhang JL, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R et al (2016b) Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett 16(8):4903–4908. https://doi.org/10.1021/acs.nanolett.6b01459

    Article  CAS  PubMed  Google Scholar 

  122. Xian L, Pérez Paz A, Bianco E, Ajayan PM, Rubio A (2017) Square selenene and tellurene: novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater 4(4):041003. https://doi.org/10.1088/2053-1583/aa8418

    Article  CAS  Google Scholar 

  123. Sharma S, Singh N, Schwingenschlögl U (2018) Two-dimensional tellurene as excellent thermoelectric material. ACS Appl Energ Mater 1(5):1950–1954. https://doi.org/10.1021/acsaem.8b00032

    Article  CAS  Google Scholar 

  124. Wang Q, Safdar M, Xu K, Mirza M, Wang Z, He J (2014) Van Der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7):7497–7505. https://doi.org/10.1021/nn5028104

    Article  CAS  PubMed  Google Scholar 

  125. Huang X, Guan J, Lin Z, Liu B, Xing S, Wang W, Guo J (2017b) Epitaxial growth and band structure of Te film on graphene. Nano Lett 17(8):4619–4623. https://doi.org/10.1021/acs.nanolett.7b01029

    Article  CAS  PubMed  Google Scholar 

  126. Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y et al (2018) Field-effect transistors made from solution-grown two-dimensional tellurene. Nature Electron 1(4):228–236. https://doi.org/10.1038/s41928-018-0058-4

    Article  Google Scholar 

  127. Ruiz-Clavijo A, Caballero-Calero O, Martín-González M (2018) Three-dimensional Bi2Te3 networks of interconnected nanowires: synthesis and optimization. Nanomaterials 8(5). https://doi.org/10.3390/nano8050345

  128. Ben-Moshe A, Wolf SG, Sadan MB, Houben L, Fan Z, Govorov AO, Markovich G (2014) Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat Commun 5(1):4302. https://doi.org/10.1038/ncomms5302

    Article  CAS  PubMed  Google Scholar 

  129. Feng W, Kim J-Y, Wang X, Calcaterra HA, Qu Z, Meshi L, Kotov NA (2017) Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci Adv 3(3):e1601159. https://doi.org/10.1126/sciadv.1601159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mayers B, Gates B, Yin Y, Xia Y (2001) Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process. Adv Mater 13(18):1380–1384. https://doi.org/10.1002/1521-4095(200109)13:18<1380::AID-ADMA1380>3.0.CO;2-W

    Article  CAS  Google Scholar 

  131. Yang Y, Wang K, Liang H-W, Liu G-Q, Feng M, Xu L, Liu J-W, Wang J-L, Yu S-H (2015) A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation. Sci Adv 1(10):e1500714. https://doi.org/10.1126/sciadv.1500714

    Article  PubMed  PubMed Central  Google Scholar 

  132. He Z, Shu-Hong Y (2005) Large scale synthesis of tellurium nanoribbons in tetraethylene pentamine aqueous solution and the stability of tellurium nanoribbons in ethanol and water. J Phys Chem B 109(48):22740–22745. https://doi.org/10.1021/JP0544484

    Article  CAS  PubMed  Google Scholar 

  133. Zhu H, Zhang H, Liang J, Rao G, Li J, Liu G, Du Z, Fan H, Luo J (2011) Controlled synthesis of tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications. J Phys Chem C 115(14):6375–6380. https://doi.org/10.1021/jp200316y

    Article  CAS  Google Scholar 

  134. Wang D, Zhao Y, Jin H, Zhuang J, Zhang W, Wang S, Wang J (2013b) Synthesis of Au-decorated tripod-shaped Te hybrids for applications in the ultrasensitive detection of arsenic. ACS Appl Mater Interfaces 5(12):5733–5740. https://doi.org/10.1021/am401205w

    Article  CAS  PubMed  Google Scholar 

  135. Zonaro E, Lampis S, Turner RJ, Junaid S, Qazi S, Vallini G (2015) Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol 6:584. https://doi.org/10.3389/fmicb.2015.00584

    Article  PubMed  PubMed Central  Google Scholar 

  136. Abo Elsoud MM, Al-Hagar OEA, Abdelkhalek ES, Sidkey NM (2018) Synthesis and investigations on tellurium myconanoparticles. Biotechnol Rep 18:e00247. https://linkinghub.elsevier.com/retrieve/pii/S2215017X17303454

    Article  Google Scholar 

  137. Medina-Cruz D, González MU, Tien-Street W, Castro MF, Crua AV, Fernández I, Martínez L, Huttel Y, Webster TJ, García-Martín JM (2019) Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. Nanomedicine 17:36–46. https://doi.org/10.1016/J.NANO.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  138. Palik ED (1998) Handbook of optical constants of solids. Academic Press, Cambridge. https://www.sciencedirect.com/book/9780125444156/handbook-of-optical-constants-of-solids

    Google Scholar 

  139. Bottom VE (1952) The hall effect and electrical resistivity of tellurium. Science 115(2995):570–571. https://doi.org/10.1126/science.115.2995.570.

    Article  CAS  PubMed  Google Scholar 

  140. Blackband WT (1951) A photo-conductive effect in tellurium film. Nature 168(4277):704. https://doi.org/10.1038/168704a0

    Article  CAS  Google Scholar 

  141. Liu J-W, Zhu J-H, Zhang C-L, Liang H-W, Yu S-H (2010) Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J Am Chem Soc 132(26):8945–8952. https://doi.org/10.1021/ja910871s

    Article  CAS  PubMed  Google Scholar 

  142. Hackney Z, Mair L, Skinner K, Washburn S (2010) Photoconductive and polarization properties of individual CdTe nanowires. Mater Lett 64(18):2016–2018. https://doi.org/10.1016/j.matlet.2010.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhou F, Chen J, Wang Y, Zhang J, Wei X, Luo R, Wang G, Wang R (2017) Remarkable catalytic activity of electrochemically dealloyed platinum–tellurium nanoparticles towards formic acid electro-oxidation. Int J Hydrog Energy 42(26):16489–16494. https://doi.org/10.1016/J.IJHYDENE.2017.05.162

    Article  CAS  Google Scholar 

  144. Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A Mater Sci Process 70(4):365–376. https://doi.org/10.1007/s003390051050

    Article  CAS  Google Scholar 

  145. Sotiropoulou S, Sierra-Sastre Y, Mark SS, Batt CA (2008) Biotemplated nanostructured materials. Chem Mater 20(3):821–834. https://doi.org/10.1021/cm702152a

    Article  CAS  Google Scholar 

  146. Yang H, Finefrock SW, Albarracin Caballero JD, Wu Y (2014) Environmentally benign synthesis of ultrathin metal telluride nanowires. J Am Chem Soc 136(29):10242–10245. https://doi.org/10.1021/ja505304v

    Article  CAS  PubMed  Google Scholar 

  147. Samal AK, Pradeep T (2010) Pt 3 Te 4 nanoparticles from tellurium nanowires. Langmuir 26(24):19136–19141. https://doi.org/10.1021/la103466j

    Article  CAS  PubMed  Google Scholar 

  148. Fernández-Lodeiro J, Rodríguez-González B, Santos HM, Bertolo E, Luis Capelo J, Santos AAD, Lodeiro C (2016) Unraveling the organotellurium chemistry applied to the synthesis of gold nanomaterials. ACS Omega 1(6):1314–1325. https://doi.org/10.1021/acsomega.6b00309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fernández-Lodeiro J, Rodríguez-Gónzalez B, Novio F, Fernández-Lodeiro A, Ruiz-Molina D, Capelo JL, dos Santos AA, Lodeiro C (2017) Synthesis and characterization of PtTe2 multi-crystallite nanoparticles using organotellurium nanocomposites. Sci Rep 7(1):9889. https://doi.org/10.1038/s41598-017-10239-8

    Article  PubMed  PubMed Central  Google Scholar 

  150. Royer D, Dieulesaint E (1979) Elastic and piezoelectric constants of trigonal selenium and tellurium crystals. J Appl Phys 50(6):4042–4045. https://doi.org/10.1063/1.326485

    Article  CAS  Google Scholar 

  151. Lee TI, Lee S, Lee E, Sohn S, Lee Y, Lee S, Moon G et al (2013) High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv Mater 25(21):2920–2925. https://doi.org/10.1002/adma.201300657

    Article  CAS  PubMed  Google Scholar 

  152. Liang T, Zha J-W, Wang D-r, Dang Z-M (2014b) Remarkable piezoresistance effect on the flexible strain sensor based on a single ultralong tellurium micrometre wire. J Phys D Appl Phys 47(50):505103. https://doi.org/10.1088/0022-3727/47/50/505103

    Article  CAS  Google Scholar 

  153. He W, Van Ngoc H, Qian YT, Hwang JS, Yan YP, Choi H, Kang DJ (2017b) Synthesis of ultra-thin tellurium nanoflakes on textiles for high-performance flexible and wearable nanogenerators. Appl Surf Sci 392:1055–1061. https://doi.org/10.1016/J.APSUSC.2016.09.157

    Article  CAS  Google Scholar 

  154. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108(9):3443–3480. https://doi.org/10.1021/cr068000q

    Article  CAS  PubMed  Google Scholar 

  155. Wang C-W, Lin Z-H, Roy P, Chang H-T (2013a) Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced raman scattering. Front Chem 1:20. https://doi.org/10.3389/fchem.2013.00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Khayat A, Dencker L (1984) Interactions between tellurium and mercury in murine lung and other organs after metallic mercury inhalation: a comparison with selenium. Chem Biol Interact 50(2):123–133. http://www.ncbi.nlm.nih.gov/pubmed/6744461

    Article  CAS  Google Scholar 

  157. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127. https://doi.org/10.1039/c3cs00009e

    Article  CAS  PubMed  Google Scholar 

  158. He J, Lv W, Chen Y, Wen K, Xu C, Zhang W, Li Y, Qin W, He W (2017a) Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries. ACS Nano 11(8):8144–8152. https://doi.org/10.1021/acsnano.7b03057.

    Article  CAS  PubMed  Google Scholar 

  159. Zhong B, Zhang Y, Li W, Chen Z, Cui J, Li W, Xie Y, Hao Q, He Q (2014) High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu 1.94 Al 0.02 Se. Appl Phys Lett 105(12):123902. https://doi.org/10.1063/1.4896520

    Article  CAS  Google Scholar 

  160. Seo J-U, Seong G-K, Park C-M (2015) Te/C nanocomposites for Li-Te secondary batteries. Sci Rep 5(1):7969. https://doi.org/10.1038/srep07969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu J, Xin S, Liu J-W, Wang J-L, Lei Y, Yu S-H (2016) Elastic carbon nanotube aerogel meets tellurium nanowires: a binder- and collector-free electrode for Li-Te batteries. Adv Funct Mater 26(21):3580–3588. https://doi.org/10.1002/adfm.201600640

    Article  CAS  Google Scholar 

  162. Zhang M, Su HC, Rheem Y, Hangarter CM, Myung NV (2012) A rapid room-temperature NO2 sensor based on tellurium–SWNT hybrid nanostructures. J Phys Chem C 116(37):20067–20074. https://doi.org/10.1021/jp305393c

    Article  CAS  Google Scholar 

  163. Tsiulyanu D, Marian S, Liess H-D (2002) Sensing properties of tellurium based thin films to propylamine and carbon oxide. Sensors Actuators B Chem 85(3):232–238. https://doi.org/10.1016/S0925-4005(02)00113-2

    Article  CAS  Google Scholar 

  164. Becher C, Maurel L, Aschauer U, Lilienblum M, Magén C, Meier D, Langenberg E et al (2015) Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat Nanotechnol 10(8):661–665. https://doi.org/10.1038/nnano.2015.108

    Article  CAS  PubMed  Google Scholar 

  165. Sen S, Bhandarkar V, Muthe KP, Roy M, Deshpande SK, Aiyer RC, Gupta SK, Yakhmi JV, Sahni VC (2006) Highly sensitive hydrogen sulphide sensors operable at room temperature. Sensors Actuators B Chem 115(1):270–275. https://doi.org/10.1016/J.SNB.2005.09.013

    Article  CAS  Google Scholar 

  166. Tsiulyanu D, Tsiulyanu A, Liess H-D, Eisele I (2005) Characterization of tellurium-based films for NO2 detection. Thin Solid Films 485(1–2):252–256. https://doi.org/10.1016/J.TSF.2005.03.045

    Article  CAS  Google Scholar 

  167. Park H, Jung H, Zhang M, Chang CH, Ndifor-Angwafor NG, Choa Y, Myung NV (2013) Branched tellurium hollow nanofibers by galvanic displacement reaction and their sensing performance toward nitrogen dioxide. Nanoscale 5(7):3058. https://doi.org/10.1039/c3nr00060e

    Article  CAS  PubMed  Google Scholar 

  168. Kumar V, Shashwati S, Sharma M, Muthe KP, Jagannath N, Gaur K, Gupta SK (2009) Tellurium nano-structure based NO gas sensor. J Nanosci Nanotechnol 9(9):5278–5282. http://www.ncbi.nlm.nih.gov/pubmed/19928213

    Article  CAS  Google Scholar 

  169. Sen S, Muthe KP, Niraj J, Gadkari SC, Gupta SK, Jagannath, Roy M, Deshpande SK, Yakhmi JV (2004) Room temperature operating ammonia sensor based on tellurium thin films. Sensors Actuators B Chem 98(2–3):154–159. https://doi.org/10.1016/J.SNB.2003.10.004

    Article  CAS  Google Scholar 

  170. Chen X, Lou Y, Dayal S, Qiu X, Krolicki R, Burda C, Zhao C, Becker J (2005) Doped semiconductor nanomaterials. J Nanosci Nanotechnol 5(9):1408–1420. http://www.ncbi.nlm.nih.gov/pubmed/16193954

    Article  CAS  Google Scholar 

  171. Sznopek JL (2006) Drivers of U.S. mineral demand. http://www.usgs.gov/pubprod

  172. Guo WX, Shu D, Chen HY, Li AJ, Wang H, Xiao GM, Dou CL et al (2009) Study on the structure and property of lead tellurium alloy as the positive grid of lead-acid batteries. J Alloys Compd 475(1–2):102–109. https://doi.org/10.1016/J.JALLCOM.2008.08.011

    Article  CAS  Google Scholar 

  173. Liang T, Su X, Yan Y, Zheng G, Zhang Q, Chi H, Tang X, Uher C (2014a) Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. J Mater Chem A 2(42):17914–17918. https://doi.org/10.1039/C4TA02780A

    Article  CAS  Google Scholar 

  174. Avidan A, Oron D (2008) Large blue shift of the biexciton state in tellurium doped CdSe colloidal quantum dots. Nano Lett 8(8):2384–2387. https://doi.org/10.1021/nl801241m

    Article  CAS  PubMed  Google Scholar 

  175. Tang K, Gu S, Wu K, Zhu S, Ye J, Zhang R, Zheng Y (2010) Tellurium assisted realization of P-type N-doped ZnO. Appl Phys Lett 96(24):242101. https://doi.org/10.1063/1.3453658

    Article  CAS  Google Scholar 

  176. Zhang Z, Khurram M, Sun Z, Yan Q (2018) Uniform tellurium doping in black phosphorus single crystals by chemical vapor transport. Inorg Chem 57(7):4098–4103. https://doi.org/10.1021/acs.inorgchem.8b00278

    Article  CAS  PubMed  Google Scholar 

  177. Qiu PF, Wang XB, Zhang TS, Shi X, Chen LD (2015) Thermoelectric properties of Te-doped ternary CuAgSe compounds. J Mater Chem A 3(44):22454–22461. https://doi.org/10.1039/C5TA06780D

    Article  CAS  Google Scholar 

  178. Park W-D, Tanioka K (2014) Tellurium Doping effect in avalanche-mode amorphous selenium photoconductive film. Appl Phys Lett 105(19):192106. https://doi.org/10.1063/1.4902011

    Article  CAS  Google Scholar 

  179. Tao H, Sun X, Back S, Han Z, Zhu Q, Robertson AW, Ma T et al (2018) Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO 2 to CO. Chem Sci 9(2):483–487. https://doi.org/10.1039/C7SC03018E

    Article  CAS  PubMed  Google Scholar 

  180. Ogra Y (2009) Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies. Anal Sci 25(10):1189–1195. https://doi.org/10.2116/analsci.25.1189

    Article  CAS  PubMed  Google Scholar 

  181. Olm E, Fernandes AP, Hebert C, Rundlöf A-K, Larsen EH, Danielsson O, Björnstedt M (2009) Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine transporter explains the cancer-specific cytotoxicity of selenite. Proc Natl Acad Sci U S A 106(27):11400–11405. https://doi.org/10.1073/pnas.0902204106

    Article  PubMed  PubMed Central  Google Scholar 

  182. Bajaj M, Winter J (2014) Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres. Microb Cell Factories 13:168. https://doi.org/10.1186/s12934-014-0168-2.

    Article  Google Scholar 

  183. Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73(7):2135–2143. https://doi.org/10.1128/AEM.02558-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Presentato A, Piacenza E, Darbandi A, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018) Assembly, growth and conductive properties of tellurium nanorods produced by rhodococcus aetherivorans BCP1. Sci Rep 8(1):3923. https://doi.org/10.1038/s41598-018-22320-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103(1):1–25. https://doi.org/10.1021/cr010210+

    Article  CAS  PubMed  Google Scholar 

  186. Ramadan SE, Razak AA, Ragab AM, el-Meleigy M (1989) Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi. Biol Trace Elem Res 20(3):225–232. http://www.ncbi.nlm.nih.gov/pubmed/2484755

    Article  CAS  Google Scholar 

  187. Cowgill UM (1988) The tellurium content of vegetation. Biol Trace Elem Res 17:43–67. http://www.ncbi.nlm.nih.gov/pubmed/2484368

    Article  CAS  Google Scholar 

  188. Anan Y, Yoshida M, Hasegawa S, Katai R, Tokumoto M, Ouerdane L, Łobiński R, Ogra Y (2013) Speciation and identification of tellurium-containing metabolites in garlic, Allium Sativum. Metallomics 5(9):1215. https://doi.org/10.1039/c3mt00108c

    Article  CAS  PubMed  Google Scholar 

  189. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6(4):189–213. https://doi.org/10.1007/s10311-008-0159-9

    Article  CAS  Google Scholar 

  190. Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255–6286. https://doi.org/10.1021/cr0406559

    Article  CAS  PubMed  Google Scholar 

  191. Nogueira CW, Rotta LN, Perry ML, Souza DO, Teixeira da Rocha JB (2001) Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Res 906(1–2):157–163. https://doi.org/10.1016/S0006-8993(01)02165-5

    Article  CAS  PubMed  Google Scholar 

  192. Vij P, Hardej D (2012) Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environ Toxicol Pharmacol 34(3):768–782. https://doi.org/10.1016/j.etap.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  193. Garberg P, Engman L, Tolmachev V, Lundqvist H, Gerdes RG, Cotgreave IA (1999) Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase. Int J Biochem Cell Biol 31(2):291–301. https://doi.org/10.1016/S1357-2725(98)00113-7

    Article  CAS  PubMed  Google Scholar 

  194. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361. https://doi.org/10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Brenneisen P, Reichert A (2018) Nanotherapy and reactive oxygen species (ROS) in cancer: a novel perspective. Antioxidants 7(2):31. https://doi.org/10.3390/antiox7020031

    Article  CAS  PubMed Central  Google Scholar 

  196. Kim KS, Lee D, Song CG, Kang PM (2015) Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine 10(17):2709–2723. https://doi.org/10.2217/nnm.15.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chou T-M, Ke Y-Y, Tsao Y-H, Li Y-C, Lin Z-H (2016) Fabrication of Te and Te-Au nanowires-based carbon fiber fabrics for antibacterial applications. Int J Environ Res Public Health 13(2):202. https://doi.org/10.3390/ijerph13020202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Feldmann J, Hirner AV (1995) Occurrence of volatile metal and metalloid species in landfill and sewage gases. Int J Environ Anal Chem 60(2–4):339–359. https://doi.org/10.1080/03067319508042888

    Article  CAS  Google Scholar 

  199. Kron T, Hansen C, Werner E (1991) Renal excretion of tellurium after peroral administration of tellurium in different forms to healthy human volunteers. J Trace Elem Electrolytes Health Dis 5(4):239–244. http://www.ncbi.nlm.nih.gov/pubmed/1822332

    CAS  PubMed  Google Scholar 

  200. Taylor A (1996) Biochemistry of tellurium. Biol Trace Elem Res 55(3):231–239. https://doi.org/10.1007/BF02785282

    Article  CAS  PubMed  Google Scholar 

  201. Brown CD, Cruz DM, Roy AK, Webster TJ (2018) Synthesis and characterization of PVP-coated tellurium nanorods and their antibacterial and anticancer properties. J Nanopart Res 20(9):254. https://doi.org/10.1007/s11051-018-4354-8

    Article  CAS  Google Scholar 

  202. Na N, Liu L, Taes YEC, Zhang C, Huang B, Liu Y, Ma L, Ouyang J (2010) Direct CdTe quantum-dot-based fluorescence imaging of human serum proteins. Small 6(15):1589–1592. https://doi.org/10.1002/smll.201000684

    Article  CAS  PubMed  Google Scholar 

  203. Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia Coli. Microbiology 145(Pt 9):2549–2557. www.microbiologyresearch.org

    Article  CAS  Google Scholar 

  204. Fleming A (1932) On the specific antibacterial properties of penicillin and potassium tellurite. Incorporating a method of demonstrating some bacterial antagonisms. J Pathol Bacteriol 35(6):831–842. https://doi.org/10.1002/path.1700350603

    Article  CAS  Google Scholar 

  205. Chapman PA, Siddons CA, Zadik PM, Jewes L (1991) An improved selective medium for the isolation of Escherichia Coli O 157. J Med Microbiol 35(2):107–110. https://doi.org/10.1099/00222615-35-2-107

    Article  CAS  PubMed  Google Scholar 

  206. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283. http://www.ncbi.nlm.nih.gov/pubmed/25859123

    PubMed  PubMed Central  Google Scholar 

  207. Webster TJ, Seil I (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767. https://doi.org/10.2147/IJN.S24805.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Wang L, Hu C, Shao L (2017a) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/IJN.S121956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Figueroa M, Fernandez V, Arenas-Salinas M, Ahumada D, Muñoz-Villagrán C, Cornejo F, Vargas E et al (2018) Synthesis and antibacterial activity of metal(loid) nanostructures by environmental multi-metal(loid) resistant bacteria and metal(loid)-reducing flavoproteins. Front Microbiol 9:959. https://doi.org/10.3389/fmicb.2018.00959

    Article  PubMed  PubMed Central  Google Scholar 

  210. Lin Z-H, Lee C-H, Chang H-Y, Chang H-T (2012) Antibacterial activities of tellurium nanomaterials. Chem Asian J 7(5):930–934. https://doi.org/10.1002/asia.201101006

    Article  CAS  PubMed  Google Scholar 

  211. Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull 47(11):3719–3725. https://doi.org/10.1016/J.MATERRESBULL.2012.06.034

    Article  CAS  Google Scholar 

  212. Jassim AMN, Farhan SA, Salman JAS, Khalaf KJ, Al Marjani MF, Mohammed M (2015) Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int J Chem Biomol Sci 1(3):81–84. https://www.semanticscholar.org/paper/Study-the-Antibacterial-Effect-of-Bismuth-Oxide-and-Jassim-Farhan/327caffd1131ea7c8c69c3f0ebf36df4ef493137

    CAS  Google Scholar 

  213. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  214. Dutta P, Harrison A, Sabbani S, Munson RS, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 6:1833. https://doi.org/10.2147/IJN.S24019.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  216. Boini S, Briançon S, Guillemin F, Galan P, Hercberg S (2004) Impact of cancer occurrence on health-related quality of life: a longitudinal pre-post assessment. Health Qual Life Outcomes 2:4. https://doi.org/10.1186/1477-7525-2-4.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Shewach DS, Kuchta RD (2009) Introduction to cancer chemotherapeutics. Chem Rev 109(7):2859–2861. https://doi.org/10.1021/cr900208x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199. https://doi.org/10.7150/ijms.3635

    Article  PubMed  PubMed Central  Google Scholar 

  219. Benjamin DJ (2014) The efficacy of surgical treatment of cancer—20 years later. Med Hypotheses 82(4):412–420. https://doi.org/10.1016/j.mehy.2014.01.004

    Article  PubMed  Google Scholar 

  220. Nakamura S (2018) [Radiotherapy and new cancer drugs—new side effects?]. Gan to Kagaku Ryoho 45(3):424–27. http://www.ncbi.nlm.nih.gov/pubmed/29650897

  221. Ramirez LY, Huestis SE, Yap TY, Zyzanski S, Drotar D, Kodish E (2009) Potential chemotherapy side effects: what do oncologists tell parents? Pediatr Blood Cancer 52(4):497–502. https://doi.org/10.1002/pbc.21835

    Article  PubMed  PubMed Central  Google Scholar 

  222. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancers 6(3):1769–1792. https://doi.org/10.3390/cancers6031769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sredni B (2012) Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol 22(1):60–69. https://doi.org/10.1016/j.semcancer.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  224. Silberman A, Kalechman Y, Hirsch S, Erlich Z, Sredni B, Albeck A (2016) The anticancer activity of organotelluranes: potential role in integrin inactivation. Chembiochem 17(10):918–927. https://doi.org/10.1002/cbic.201500614

    Article  CAS  PubMed  Google Scholar 

  225. Fry F, Jacob C (2006) Sensor/effector drug design with potential relevance to cancer. Curr Pharm Des 12(34):4479–4499. https://doi.org/10.2174/138161206779010512

    Article  CAS  PubMed  Google Scholar 

  226. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016c) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  PubMed Central  Google Scholar 

  227. Giles NM, Gutowski NJ, Giles GI, Jacob C (2003b) Redox catalysts as sensitisers towards oxidative stress. FEBS Lett 535(1–3):179–182. https://doi.org/10.1016/S0014-5793(02)03890-5

    Article  CAS  PubMed  Google Scholar 

  228. Fry FH, Holme AL, Giles NM, Giles GI, Collins C, Holt K, Pariagh S et al (2005) Multifunctional redox catalysts as selective enhancers of oxidative stress. Org Biomol Chem 3(14):2579. https://doi.org/10.1039/b502197a

    Article  CAS  PubMed  Google Scholar 

  229. Carmely A, Meirow D, Peretz A, Albeck M, Bartoov B, Sredni B (2009) Protective effect of the immunomodulator AS101 against cyclophosphamide-induced testicular damage in mice. Hum Reprod 24(6):1322–1329. https://doi.org/10.1093/humrep/den481

    Article  CAS  PubMed  Google Scholar 

  230. Cunha RL, Gouvêa IE, Feitosa GPV, Alves MFM, Brömme D, Comasseto JV, Tersariol ILS, Juliano L (2009) Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds. Biol Chem 390(11):1205–1212. https://doi.org/10.1515/BC.2009.125

    Article  CAS  PubMed  Google Scholar 

  231. Ahmed K, Zaidi SF (2013) Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis. J Pak Med Assoc 63(4):504–508. http://www.ncbi.nlm.nih.gov/pubmed/23905451

    PubMed  Google Scholar 

  232. Luk KH, Hulse RM, Phillips TL (1980) Hyperthermia in cancer therapy. West J Med 132(3):179–185. http://www.ncbi.nlm.nih.gov/pubmed/7376656

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Huang W, Huang Y, You Y, Nie T, Chen T (2017a) High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy. Adv Funct Mater 27(33):1701388. https://doi.org/10.1002/adfm.201701388

    Article  CAS  Google Scholar 

  234. Huang Y, Fan C-Q, Dong H, Wang S-M, Yang X-C, Yang S-M (2017c) Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomedicine 12:1815–1825. https://doi.org/10.2147/IJN.S127349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Iglehart JK (2006) The new era of medical imaging—progress and pitfalls. N Engl J Med 354(26):2822–2828. https://doi.org/10.1056/NEJMhpr061219

    Article  CAS  PubMed  Google Scholar 

  236. Garvey CJ, Hanlon R (2002) Computed tomography in clinical practice. BMJ 324(7345):1077–1080. http://www.ncbi.nlm.nih.gov/pubmed/11991915

    Article  Google Scholar 

  237. Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW (2015) Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol 5(3):246–255. https://doi.org/10.1016/j.jceh.2015.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  238. Picano E (2005) Economic and biological costs of cardiac imaging. Cardiovasc Ultrasound 3:13. https://doi.org/10.1186/1476-7120-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  239. Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E (2014) Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 76:79–97. https://doi.org/10.1016/j.addr.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  240. Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2(2):129–141. http://www.ncbi.nlm.nih.gov/pubmed/17722542

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986. https://doi.org/10.1021/acs.chemrev.6b00073

    Article  CAS  PubMed  Google Scholar 

  242. Leary J, Key J (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine 9:711. https://doi.org/10.2147/IJN.S53717

    Article  PubMed  PubMed Central  Google Scholar 

  243. Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13(2):125–138. https://doi.org/10.1038/nmat3780

    Article  CAS  PubMed  Google Scholar 

  244. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291–310. http://www.ncbi.nlm.nih.gov/pubmed/21084027

    Article  CAS  Google Scholar 

  245. Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194. https://doi.org/10.1517/17425240903229031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364. https://doi.org/10.1021/acs.molpharmaceut.6b00839

    Article  CAS  PubMed  Google Scholar 

  247. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596. http://www.ncbi.nlm.nih.gov/pubmed/19367807

    Article  CAS  Google Scholar 

  248. Liu X, Silks LA, Liu C, Ollivault-Shiflett M, Huang X, Li J, Luo G, Hou Y-M, Liu J, Shen J (2009) Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew Chem Int Ed 48(11):2020–2023. https://doi.org/10.1002/anie.200805365

    Article  CAS  Google Scholar 

  249. Knapp FF, Ambrose KR (1980) Tellurium-123m-labeled 23-(lsopropyl telluro)-24-Nor-5a-Cholan-3f3-Ol: a new potential adrenal imaging agent. J Nucl Med 21:251–257. http://jnm.snmjournals.org/content/21/3/251.full.pdf

    CAS  PubMed  Google Scholar 

  250. Okada RD, Knapp FF, Elmaleh DR, Yasuda T, Boucher CA, Strauss HW (1982) Tellurium-123m-labeled-9-telluraheptadecanoic acid: a possible cardiac imaging agent. Circulation 65(2):305–310. https://doi.org/10.1161/01.CIR.65.2.305

    Article  CAS  PubMed  Google Scholar 

  251. Valizadeh A, Mikaeili H, Samiei M, Farkhani S, Zarghami N, kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7(1):480. https://doi.org/10.1186/1556-276X-7-480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Barroso MM (2011) Quantum dots in cell biology. J Histochem Cytochem 59(3):237–251. https://doi.org/10.1369/0022155411398487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125(23):7100–7106. https://doi.org/10.1021/JA035000O

    Article  CAS  PubMed  Google Scholar 

  254. Chen L, Chen C, Li R, Li Y, Liu S (2009) CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker. Chem Commun (19):2670. https://doi.org/10.1039/b900319c

  255. Xu P, Li J, Shi L, Selke M, Chen B, Wang X (2013) Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. Int J Nanomedicine 8:3729. https://doi.org/10.2147/IJN.S51622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Jiang C, Shen Z, Luo C, Lin H, Huang R, Wang Y, Peng H (2016) One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities. Talanta 155:14–20. https://doi.org/10.1016/j.talanta.2016.04.021.

    Article  CAS  PubMed  Google Scholar 

  257. Zhang J, Su J, Liu L, Huang Y, Mason RP (2008) Evaluation of red CdTe and near infrared CdHgTe quantum dots by fluorescent imaging. J Nanosci Nanotechnol 8(3):1155–1159. http://www.ncbi.nlm.nih.gov/pubmed/18468115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Medina-Cruz, D. et al. (2020). Tellurium, the Forgotten Element: A Review of the Properties, Processes, and Biomedical Applications of the Bulk and Nanoscale Metalloid. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_26

Download citation

Publish with us

Policies and ethics