Skip to main content

Synthesis of Metal/Metal Oxide Nanoparticles by Green Methods and Their Applications

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 41

Abstract

Nanotechnology is an exciting field of research; numerous versatile nanoparticles can be synthesized into a range of sizes, shapes, and chemical compositions, ultimately offering extensive applications for humans. Correct synthesis, manipulation, and use of metal NPs grant them with unique thermal, optical and electronic properties. In material science, ‘green’ synthesis has been considered a reliable, sustainable and environmentally-friendly protocol. Non-toxic and environmentally-friendly methods have been developed for synthesis of metal/metal oxide NPs. These techniques use live organisms such as bacteria, fungi, yeast, algae, and plants and their tissues and extracts. The biomolecules of natural extracts, such as enzymes, flavonoids, phenols, and terpenoids can be used as reducing agents of metal ions to metal NPs. Whilst the physical and chemical techniques used in traditional synthesis methods have raised environmental concerns due to use of hazardous chemicals and their possible emissions to the environment, green methods have made it possible to develop a simple, rapid, and environmentally-friendly means of synthesizing NPs. NPs produced by green methods are usually more stable and do not require application of chemical stabilizers; as a result, toxic residues do not enter the environment. Green-synthesized NPs have extensive applications for their antibacterial and antifungal properties and may be used as either plant growth stimulators or inhibitors, depending on their type, size, and shape, as well as the specific plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv:3974–3983. https://doi.org/10.1039/C3RA44507K

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318. https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  • Ali I, Qiang TY, Ilahi N, Adnan M, Sajjad W (2018) Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens. Int J Biosci 13(5):1–5

    Article  CAS  Google Scholar 

  • Alia DS, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Jose R, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 14:7637–7643

    Google Scholar 

  • Aljabali AA, ID Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M, Evans DJ (2018) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8:1–15. https://doi.org/10.3390/nano8030174

    Article  CAS  Google Scholar 

  • Arya A, Gupta K, Chundawat TS, Vaya D (2018) Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Hindawi Bioinorg Chem Appl 2018:1–9

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Ayesha A (2017) Bacterial synthesis and applications of nanoparticles. Nano Sci Nano Technol Indian J 11:119–126

    Google Scholar 

  • Beyrami Miavaghi M, Pourakbar L (2016) Phytosynthesis of silvern by medicinal plant Malva neglecta. Qom Univ Med Sci J 10:38–44. (English abstract)

    Google Scholar 

  • Bhainsa KC, Souza SFD (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B: Biointerfaces 47:160–164

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Rasheed T, Sosa-Hernández JE, Raza A, Nabeel F, Iqbal HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs 16:1–16

    Article  CAS  Google Scholar 

  • Christian F, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology 17:326–343

    Article  CAS  PubMed  Google Scholar 

  • Clement JL, Jarret PS (1994) Antimicrobial silver. Metal Based Drugs 1:467–482. https://doi.org/10.1155/MBD.1994.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA, De Araújo JM (2006) Responses of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256

    Article  CAS  Google Scholar 

  • David E, Elumalai EK, Prasad TN, Venkata K, Nagajyothi PC (2010) Green synthesis of silver nanoparticle using Euphorbia hirta L and their antifungal activities. Arch Appl Sci Res 2:76–81

    Google Scholar 

  • Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38:31–39. https://doi.org/10.3906/biy-1306-11

    Article  CAS  Google Scholar 

  • Doble M, Kruthiventi AK (2007) Green chemistry and engineering. Academic, Cambridge

    Google Scholar 

  • Dobrucka R (2017) Synthesis of titanium dioxide nanoparticles using Echinacea purpurea Herba. Iran J Pharm Res 16:753–759

    CAS  Google Scholar 

  • Donaldson K, Tran L, Jimenez L, Duffin A, Newby R, Mills D, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong ZY, Manik PNR, Xiao M, Hong-Fei W, Wael N, Hozzein Wei C, Wen-Jun L (2017) Antibacterial activity of silver nanoparticles against Staphylococcus warneri synthesized using endophytic bacteria by photo-irradiation. Front Microbiol 8:1–8

    Google Scholar 

  • Duran N, Marcato P, Alves O, Desouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. NanoBiotechnology 13:3–8

    Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369:27–33. https://doi.org/10.1016/j.colsurfa.2010.07.020

    Article  CAS  Google Scholar 

  • Fakhari SH, Jamzad M, Kabiri Fard H (2019) Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev 12:19–24

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan RS (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    Article  CAS  PubMed  Google Scholar 

  • Forough M, Farhadi KH (2010) Biological and green synthesis of silver nanoparticles. Turk J Eng Environ Sci 34:281–287

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Franklin N, Rogers N, Apte S, Batley G, Gadd G, Casey P (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey J, Peralta-Videa R, Rosaa G, Parson GJ (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:797–810

    Google Scholar 

  • Geonmonond RS, Da Silva AGM, Camargo PH (2018) Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. Anais Da Academia Brasileira De Ciencias 90:719–744. https://doi.org/10.1590/0001-3765201820170561

    Article  CAS  PubMed  Google Scholar 

  • Henglein A (1993) Physicochemical properties of small metal particles in solution. “Microelectrode” reactions, chemisorptions, composite metal particles, and the atom-to-metal transition. J Phys Chem B 97:5457–5471

    Article  CAS  Google Scholar 

  • Honary S, Barabadi H, Gharaei – Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 7:999–1005

    Google Scholar 

  • Honary S, Barabadi H, Gharaei Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the Fungus Penicillium citrinum. Trop J Pharm Res 12:7–11

    CAS  Google Scholar 

  • Hong FS, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Li D, Sun Y, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):1–11. https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Jafari A, Pourakbar L, Farhadi KH, Mohamad Golizad L (2015) Biological synthesis of silver nanoparticles and evalution of antibacterial and antifungal properties of silver and copper nanoparticles. Turk J Biol 39:1–6. https://doi.org/10.3906/biy-1406-81

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha AK, Prasad K, Kumar V, Prasad K (2009) Biosynthesis of silver nanoparticles using eclipta leaf. Biotechnol Prog 25:1476–1479. https://doi.org/10.1002/btpr.233

    Article  CAS  PubMed  Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, Van Pelt FNAM, O’Halloran J, Jansen MAK (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336

    Article  CAS  PubMed  Google Scholar 

  • Karimi Z, Pourakbar L, Feizi H (2014) Comparison effect of nano-iron chelate and iron chelate on growth parameters and antioxidant enzymes activity of mung bean (Vigna radiate L.). Adv Environ Biol 8:916–930

    CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227. https://doi.org/10.1021/nn900887m

    Article  CAS  PubMed  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production andcrop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács E, Nyitrai P, Czövek P, Òvári M, Keresztes A (2009) Investigation into the mechanism of stimulation by low-concentration stressors in barley seedlings. J Plant Physiol 166:72–79

    Article  PubMed  CAS  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

    Article  CAS  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  Google Scholar 

  • Kumar N, Kumbhat S (2016) Carbon-based nanomaterials. In: Essentials in Nanoscience and Nanotechnology. Wiley, Hoboken, pp 189–236. https://doi.org/10.1002/9781119096122.ch5

    Chapter  Google Scholar 

  • Kushwaha A, Kumar Singh V, Bhartariya J, Singh P, Yasmeen K (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5:65–70

    CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Qui L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476. https://doi.org/10.3390/ijms13010466

    Article  CAS  PubMed  Google Scholar 

  • Limbach L, Wick P, Manser P, Grass R, Bruinink A, Stark W (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162:542–550. https://doi.org/10.1016/j.resmic.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Moradi Rikabad M, Pourakbar L, Siavash Moghaddam S, Popović-Djordjević J (2019) Agrobiological, chemical and antioxidant properties of saffron (Crocus sativus L.) exposed to TiO2 nanoparticles and ultraviolet-B stress. Ind Crop Prod 137:137–143. https://doi.org/10.1016/j.indcrop.2019.05.017

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463. https://doi.org/10.1002/1439-7633(20020503)3:5<461:AID-CBIC461>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescense of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Sakthi Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Neal AL (2008) What can be inferred from bacterium nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371. https://doi.org/10.1007/s10646-008-0217-x

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. https://doi.org/10.1128/AEM.02218-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pape HL, Serena FS, Contini P, Devillers C, Maftah A, Leprat P (2002) Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2947–2954

    Article  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2007) A new composition of nano sized silica silver for control of various plant diseases. Plant Pathol 22:295–302

    Article  Google Scholar 

  • Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27:990–993. https://doi.org/10.1016/j.msec.2006.09.023

    Article  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Pourakbar L, Yosefzaei F, Farhadi K (2019) Biosynthesis of silver nanoparticles from tree gum extracts and evaluation of antibacterial properties of silver and copper nanoparticles. Sci J Ilam Univ Med Sci 26:1–9

    Google Scholar 

  • Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium–γglutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263:12832–12835

    CAS  PubMed  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826. https://doi.org/10.1039/b303808b

    Article  CAS  Google Scholar 

  • Sharma G, Soni R, Jasuja ND (2017) Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci 11:471–477

    Article  Google Scholar 

  • Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12:1667–1675. https://doi.org/10.1007/s11051-009-9835-3

    Article  CAS  Google Scholar 

  • Sowani H, Mohite P, Munot H, Shouche Y, Bapat T, Kumar AR, Kulkarni M, Zinjarde S (2016) Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: mechanistic aspects and biological application. Process Biochem 51:374–383

    Article  CAS  Google Scholar 

  • Suresh J, Yuvakkumar R, Sundrarajan M, Hong SI (2014) Green synthesis of magnesium oxide nanoparticles. Adv Mater Res 952:141–144

    Article  CAS  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147. https://doi.org/10.1016/j.saa.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  • Trindade T, O’Brien P, Pickett N (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Reviews. Chem Mater 13:3843–3858

    Article  CAS  Google Scholar 

  • Tripathy A, Raichur AM, Chandrasekaran N, Prathna AMTC (2009) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract oa Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246. https://doi.org/10.1007/s11051-009-9602-5

    Article  CAS  Google Scholar 

  • Venkatpurwar V, Pokharkar V (2011) Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Mater Lett 65:999–1002. https://doi.org/10.1016/j.matlet.2010.12.057

    Article  CAS  Google Scholar 

  • Viau G, Brayner R, Poul L, Chakroune N, Lacaze E, Fievet-Vincent F, Fievet F (2003) Ruthenium nanoparticles: size, shape, and self-assemblies. Chem Mater 15:486–494

    Article  CAS  Google Scholar 

  • Vinopal S, Runal T, Kotrba P (2007) Biosorption os Cd2+ and Zn2+ bycell surface engineered Saccharomyces cerevisiae. Int Biodeterior Biodegradation 60:96–102

    Article  CAS  Google Scholar 

  • Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120

    Article  CAS  Google Scholar 

  • Xia N, Cai Y, Jiang T, Yao J (2011) Green synthesis of silver nanoparticles by chemical reductionwith hyaluronan. Carbohydr Polym 86:956–961. https://doi.org/10.1016/j.carbpol.2011.05.053

    Article  CAS  Google Scholar 

  • Yang L, Watts D (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yuhui M, Linglin K, Xiao H, Wei B, Yayun D, Zhiyong Z, Yuliang Z, Zhifang C (2009) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Google Scholar 

  • Yusefzaei F, Poorakbar L, Farhadi K, Molaei R (2017) The effect of copper nanoparticles and copper chloride solution on germination and solution some morphological and physiological factors Ocimum basilicum L. Iran J Plant Res 30:1–12. (English abstract)

    Google Scholar 

  • Yuvakkumar R, Suresh J, Joseph Nathanael A, Sundrarajan M, Hong SI (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C 41:17–27

    Article  CAS  Google Scholar 

  • Zhang Z, Li F, Xu L, Liu N, Xiao H, Chai Z (2004) Study of binding properties of lanthanum to wheat roots by INAA. J Radioanal Nucl Chem 259:47–49

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Latifeh Pourakbar or Jelena Popović-Djordjević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pourakbar, L., Siavash Moghaddam, S., Popović-Djordjević, J. (2020). Synthesis of Metal/Metal Oxide Nanoparticles by Green Methods and Their Applications. In: Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q. (eds) Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-33996-8_3

Download citation

Publish with us

Policies and ethics