Skip to main content

Machine Autonomy: Definition, Approaches, Challenges and Research Gaps

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 997))

Abstract

The processes that constitute the designs and implementations of AI systems such as self-driving cars, factory robots and so on have been mostly hand-engineered in the sense that the designers aim at giving the robots adequate knowledge of its world. This approach is not always efficient especially when the agent’s environment is unknown or too complex to be represented algorithmically. A truly autonomous agent can develop skills to enable it to succeed in such environments without giving it the ontological knowledge of the environment a priori. This paper seeks to review different notions of machine autonomy and presents a definition of autonomy and its attributes. The attributes of autonomy as presented in this paper are categorised into low-level and high-level attributes. The low-level attributes are the basic attributes that serve as the separating line between autonomous and other automated systems while the high-level attributes can serve as a taxonomic framework for ranking the degrees of autonomy of any system that has passed the low-level autonomy. The paper reviews some AI techniques as well as popular AI projects that focus on autonomous agent designs in order to identify the challenges of achieving a true autonomous system and suggest possible research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smithers, T., Laboratory VUBAI: Taking Eliminative Materialism Seriously: A Methodology for Autonomous Systems Research. Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels (1992)

    Google Scholar 

  2. Franklin, S.: Artificial Minds. MIT Press, Cambridge, p. 449 (1995)

    Google Scholar 

  3. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology, p. 320, MIT Press, Cambridge (2000)

    Google Scholar 

  4. Froese, T., Virgo, N., Izquierdo, E.: Autonomy: a review and a reappraisal. In: Advances in Artificial Life, pp. 455–464. Springer, Heidelberg (2007)

    Google Scholar 

  5. Harbers, M., Peeters, M.M.M., Neerincx, M.A.: Perceived autonomy of robots: effects of appearance and context. In: Aldinhas Ferreira, M.I., Silva Sequeira, J., Tokhi, M.O., Kadar, E., Virk, G.S. (eds.) A World with Robots: International Conference on Robot Ethics: ICRE 2015, pp. 19–33. Springer, Cham (2017)

    Google Scholar 

  6. Bradshaw, J.M., Hoffman, R.R., Woods, D.D., Johnson, M.: The seven deadly myths of “autonomous systems”. IEEE Intell. Syst. 28, 54–61 (2013)

    Google Scholar 

  7. Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill Higher Education, p. 640 (1990)

    Google Scholar 

  8. Roe, A.W., Sur, M.: Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. J. Neurosci. 12(9), 3651–3664 (1992)

    Google Scholar 

  9. Scharre, P., Horowitz, M.: An introduction to autonomy in weapon systems. In: Ethical Autonomy—working paper (2015)

    Google Scholar 

  10. Lane, D.M.: Persistent autonomy artificial intelligence or biomimesis? 2012 IEEE/OES Autonomous Underwater Vehicles (AUV) pp. 1–8 (2012)

    Google Scholar 

  11. Pernar, S.: The Evolutionary Perspective-a Transhuman Philosophy (2015)

    Google Scholar 

  12. Lomonova, E.A.: Advanced actuation systems—state of the art: fundamental and applied research. In: International Conference on Electrical Machines and Systems pp. 13–24 (2010)

    Google Scholar 

  13. Hong, J., Suh, E., Kim, S.: Context-aware systems: a literature review and classification. Expert. Syst. Appl. 36, 8509–8522 (2009)

    Google Scholar 

  14. Viterbo, J., Sacramento, V., Rocha, R., Baptista, G., Malcher, M., Endler, M.A.: Middleware architecture for context-aware and location-based mobile applications. In: 2008 32nd Annual IEEE Software Engineering Workshop pp. 52–61 (2008)

    Google Scholar 

  15. Gui, F., Zong, N., Adjouadi, M.: Artificial intelligence approach of context-awareness architecture for mobile computing. Sixth International Conference on Intelligent Systems Design and Applications 2, 527–533 (2006)

    Google Scholar 

  16. Haugeland, J.: Artificial Intelligence: The Very Idea. Bradford, Cambridge, MA (1985)

    Google Scholar 

  17. Pierce, D., Kuipers, B.J.: Map learning with uninterpreted sensors and effectors. Artificial Intelligence 92, 169–227 (1987)

    Google Scholar 

  18. Chaput, H.H.: The constructivist learning architecture: A model of cognitive development for robust autonomous robots. PhD. AI Laboratory, The University of Texas at Austin. Supervisors: Kuipers and Miikkulainen (2004). https://pdfs.semanticscholar.org/7bb4/18868b2c95443243f5f7a5b9a5a15d342570.pdf. Accessed 12 Aug 2018

  19. Oudeyer, P.Y., Kaplan, F., Hafner, V.V.: Intrinsic motivation systems for autonomous mental development. IEEE Trans. Evol. Comput. 11, 265–286 (2007)

    Google Scholar 

  20. Barto, A.G.: Intrinsic motivation and reinforcement learning. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems. pp. 17–47. Springer, Heidelberg (2013)

    Google Scholar 

  21. Santucci, V.G., Baldassarre, G., Mirolli, M.: GRAIL: a goal-discovering robotic architecture for intrinsically-motivated learning. IEEE Trans. Cognit. Develop. Syst. 8, 214–231 (2016)

    Google Scholar 

  22. Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Trans. Auton. Mental Develop. 2, 230–247 (2010)

    Google Scholar 

  23. Frank, M., Leitner, J., Stollenga, M., Förster, A., Schmidhuber, J.: Curiosity driven reinforcement learning for motion planning on humanoids. Frontiers in Neurorobotics 7, 25 (2013)

    Google Scholar 

  24. Ngo, H., Luciw, M., Forster, A., Schmidhuber, J.: Learning skills from play: artificial curiosity on a katana robot arm. In: The 2012 International Joint Conference on Neural Networks (IJCNN) pp. 1–8 (2012)

    Google Scholar 

  25. Gordon, G., Ahissar, E.: A curious emergence of reaching. Advances in Autonomous Robotics. In: TAROS 2012 Lecture Notes in Computer Science, Berlin, Heidelberg, 7429: 1–12 (2012)

    Google Scholar 

  26. Georgeon, O.L., Marshall, J.B., Gay, S.: Interactional motivation in artificial systems: between extrinsic and intrinsic motivation. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL) pp. 1–2 (2012)

    Google Scholar 

  27. Cangelosi, A., Schlesinger, M.: Developmental Robotics: From Babies to Robots. The MIT Press, Cambridge, p. 408 (2014)

    Google Scholar 

  28. Froese, T., Ziemke, T.: Enactive artificial intelligence: investigating the systemic organization of life and mind. Artificial Intelligence 173, 466–500 (2009)

    Google Scholar 

  29. Thórisson, K.R., Eric, N., Ricardo, S., Pei, W.: Editorial: approaches and assumptions of self-programming in achieving artificial general intelligence. J. Artif. Gen. Intell. 3, 1 (2013)

    Google Scholar 

  30. Georgeon, O.L., Marshall, J.B.: Demonstrating sensemaking emergence in artificial agents: a method and an example. Int. J. Mach. Conscious. 05, 131–144 (2013)

    Google Scholar 

  31. Stramandinoli, F., Tikhanoff, V., Pattacini, U., Nori, F.: A bayesian approach towards affordance learning in artificial agents. In: 2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) pp. 298–299 (2015)

    Google Scholar 

  32. Wang, J.G., Mahendran, P.S., Teoh, E.K.: Deep affordance learning for single- and multiple-instance object detection. In: TENCON 2017 - 2017 IEEE Region 10 Conference pp. 321–326 (2017)

    Google Scholar 

  33. Glover, A.J., Wyeth, G.F.: Toward lifelong affordance learning using a distributed markov model. IEEE Trans. Cognit. Develop. Syst. 10, 44–55 (2018)

    Google Scholar 

  34. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, London, p. 1132 (2003)

    Google Scholar 

  35. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press, Cambridge, p. 480 (2012)

    Google Scholar 

  36. Ng, A.Y.: Preventing “overfitting” of cross-validation data. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 245–253 (1997)

    Google Scholar 

  37. Bhlmann, P., Van De Geer, S.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Berlin, Incorporated, p. 573 (2011)

    Google Scholar 

  38. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR 2012; abs/1207.0580 (2012)

    Google Scholar 

  39. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of learning methods. ACM Comput. Surv. 50, 21:1–21:35 (2017)

    Google Scholar 

  40. Tscherepanow, M., Hillebrand, M., Hegel, F., Wrede, B., Kummert, F.: Direct imitation of human facial expressions by a user-interface robot. In 2009 9th IEEE-RAS International Conference on Humanoid Robots, pp. 154–160. IEEE (2009)

    Google Scholar 

  41. Billard, A., Grollman, D.: Imitation Learning in Robots. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning, pp. 1494–1496. Springer US, Boston (2012)

    Google Scholar 

  42. Nehaniv, C.L., Dautenhahn, K.: Imitation in animals and artifacts. In: Dautenhahn, K., Nehaniv, C.L. (eds.) pp. 41–61. MIT Press, Cambridge (2002)

    Google Scholar 

  43. Szepesvari, C.: Algorithms for Reinforcement Learning. Morgan and Claypool Publishers, San Rafael (2010)

    Google Scholar 

  44. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)

    Google Scholar 

  45. Marcus, G.: Deep Learning: A Critical Appraisal, CoRR, abs/1801.00631 (2018)

    Google Scholar 

  46. Lanchantin, P., Pieczynski, W.: Unsupervised restoration of hidden nonstationary markov chains using evidential priors. IEEE Trans. Signal Process. 53, 3091–3098 (2005)

    Google Scholar 

  47. Acharyya, R., Ham, F.M.: A new approach for blind separation of convolutive mixtures. In: 2007 International Joint Conference on Neural Networks pp. 2075–2080 (2007)

    Google Scholar 

  48. Ramezani, R., Saraee, M., Nematbakhsh, M.A.: MRAR: mining multi-relation association rules. J. Comp. Security 1(2), 133–158 (2014)

    Google Scholar 

  49. Heaton, J.: Comparing dataset characteristics that favor the apriori, eclat or FP-growth frequent itemset mining algorithms. SoutheastCon 2016, 1–7 (2016)

    Google Scholar 

  50. Fodor, I.K.: A survey of dimension reduction techniques. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 9, 1–18 (2002)

    Google Scholar 

  51. Chaput, H.H.: The constructivist learning architecture: a model of cognitive development for robust autonomous robots (2004)

    Google Scholar 

  52. Zhong, C., Liu, S., Lu, Q., Zhang, B.: Continuous learning route map for robot navigation using a growing-on-demand self-organizing neural network. Int. J. Adv. Robot. Syst. 14, 1729881417743612 (2017)

    Google Scholar 

  53. Karhunen, J., Raiko, T., Cho, K.: Unsupervised deep learning: a short review (2014). https://pdfs.semanticscholar.org/9a9a/9e32ca5cb15e00d0b5a1f2a2656905ba79df.pdf. Accessed 24 Nov 2018

  54. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philosophical Transactions, Series A, Mathematical, Physical, and Engineering Sciences 374(2065), 20150202 (2016)

    Google Scholar 

  55. Pindah, W., Nordin, S., Seman, A., Mohamed Said, M.S.: Review of dimensionality reduction techniques using clustering algorithm in reconstruction of gene regulatory networks, pp. 172–176 (2015)

    Google Scholar 

  56. Xie, H., Li, J., Xue, H.: A survey of dimensionality reduction techniques based on random projection, CoRR, abs/1706.04371 (2017)

    Google Scholar 

  57. Ishii, K., Nishida, S., Ura, T.: A self-organizing map based navigation system for an underwater robot, robotics and automation. In: Proceedings of 2004 IEEE International Conference on ICRA 2004, vol. 5, pp. 4466–4471, April 2004

    Google Scholar 

  58. Kim, S., Park, F.C.: Fast robot motion generation using principal components: framework and algorithms. IEEE Trans. Ind. Elec. 55(6), 2506–2516 (2008)

    Google Scholar 

  59. Finn, C., Tan, X.Y., Duan, Y., Darrell, T., Levine, S., Abbeel, P.: Learning visual feature spaces for robotic manipulation with deep spatial autoencoders, CoRR, abs/1509.06113 (2015)

    Google Scholar 

  60. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA (1998)

    Google Scholar 

  61. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning (2nd edition, in preparation). MIT Press, Cambridge (2017)

    Google Scholar 

  62. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992)

    Google Scholar 

  63. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Google Scholar 

  64. Kormushev, P., Calinon, S., Caldwell, G.D.: Reinforcement learning in robotics: applications and real-world challenges. Robotics 2(3), 122–148 (2013)

    Google Scholar 

  65. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta, Canada, p. 1 (2004)

    Google Scholar 

  66. Settles, B.: Active Learning Literature Survey. University of Wisconsin, Madison. (2009)

    Google Scholar 

  67. Olsson, F.: A literature survey of active machine learning in the context of natural language processing (2009)

    Google Scholar 

  68. Hussein, A., Elyan, E., Gaber, M.M., Jayne, C.: Deep imitation learning for 3D navigation tasks. Neural Comput. Appl. 29, 389–404 (2018)

    Google Scholar 

  69. Mash-Simulator. https://github.com/idiap/mash-simulator. Accessed 10 July 2018

  70. Dima, C., Hebert, M.: Active learning for outdoor obstacle detection (2005)

    Google Scholar 

  71. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowled. Data Eng. 22, 1345–1359 (2010)

    Google Scholar 

  72. Brys, T., Harutyunyan, A., Taylor, M.E., Nowé, A.: Ann.: Policy Transfer Using Reward Shaping, pp. 181–188 (2015)

    Google Scholar 

  73. Weiss, K., Khoshgoftaar, T.M, Wang, D.: A survey of transfer learning. J. Big Data 3, 9 (2016)

    Google Scholar 

  74. Tsung, F., Zhang, K., Cheng, L., Song, Z.: Statistical transfer learning: a review and some extensions to statistical process control. Quality Engineering 30, 115–128 (2018)

    Google Scholar 

  75. Barrett, S., Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning on a physical robot, p. 1 (2010)

    Google Scholar 

  76. Kira, Z.: Inter-robot transfer learning for perceptual classification, pp. 13–20 (2010)

    Google Scholar 

  77. Huang, Z., Pan, Z., Lei, B.: Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sensing 9, 907 (2017)

    Google Scholar 

  78. Grefenstette, J.J.: Evolutionary algorithms in robotics†. In: Fifth International Symposium on Robotics and Manufacturing, ISRAM 94 (1994)

    Google Scholar 

  79. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1992)

    Google Scholar 

  80. Vent, W.: Rechenberg, ingo, evolutionsstrategie—optimierung technischer systeme nach prinzipien der biologischen evolution. 170 S. mit 36 abb. Frommann‐Holzboog‐Verlag. stuttgart 1973. broschiert. Feddes Repert 86, p. 337 (2008)

    Google Scholar 

  81. Luke, S., Hamahashi, S., Kitano, H.: Genetic programming, pp. 1098–1105 (1999)

    Google Scholar 

  82. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57, 345–370 (2009)

    Google Scholar 

  83. Doncieux, S., Bredeche, N., Mouret, J., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Frontiers in Robotics and AI 2, 4 (2015)

    Google Scholar 

  84. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. CoRR, abs/1712.06567 (2017)

    Google Scholar 

  85. Duarte, M., Costa, V., Gomes, J.C., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots, CoRR, abs/1511.03154 (2015)

    Google Scholar 

  86. Schrum, J., Lehman, J., Risi, S.: Automatic evolution of multimodal behavior with multi-brain HyperNEAT, pp. 21–22. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, Denver, Colorado, USA, (2016)

    Google Scholar 

  87. Turing, A.M.: Computers & Thought. In: Feigenbaum, E.A., Feldman, J. (eds.) MIT Press, Cambridge, pp. 11–35 (1995).

    Google Scholar 

  88. Piaget, J.: The origins of intelligence in children. International Universities Press, New York (1952)

    Google Scholar 

  89. Tsou, J.Y.: Genetic epistemology and piaget’s philosophy of science: Piaget vs. kuhn on scientific progress. Theory & Psychology 16, 203–224 (2006)

    Google Scholar 

  90. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., Yoshida, C.: Cognitive developmental robotics: a survey. IEEE Trans. Auton. Mental Develop. 1, 12–34 (2009)

    Google Scholar 

  91. Guerin, F.: Learning like a baby: A survey of artificial intelligence approaches. Knowl. Eng. Rev. 26, 209–236 (2011)

    Google Scholar 

  92. Oudeyer, P.: Autonomous development and learning in artificial intelligence and robotics: scaling up deep learning to human-like learning. CoRR, abs/1712.01626 (2017)

    Google Scholar 

  93. Oudeyer, P., Kaplan, F., Hafner, V.V., Whyte, A.: The playground experiment: task-independent development of a curious robot. In: Proceedings of AAAI Spring Symposium on Developmental Robotics, pp. 42–47 (2005)

    Google Scholar 

  94. Zuo, B., Chen, J., Wang, L., Wang, Y.: A reinforcement learning based robotic navigation system. IEEE Int. Conf. Sys. Man Cyber. (SMC), pp. 3452–3457 (2014)

    Google Scholar 

  95. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning. CoRR, abs/1312.5602 (2013)

    Google Scholar 

  96. Singh, S.P., Barto, A.G., Chentanez, N.: Intrinsically motivated reinforcement learning. In: Advances in Neural Information Processing Systems 17 (NIPS). MIT Press (2004)

    Google Scholar 

  97. Assis, LdS., Soares, AdS., Coelho, C.J., Van Baalen, J.: An evolutionary algorithm for autonomous robot navigation. Proc. Comp. Sci. 80, 2261–2265 (2016)

    Google Scholar 

  98. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by self-supervised prediction. CoRR, abs/1705.05363 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinedu Pascal Ezenkwu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ezenkwu, C.P., Starkey, A. (2019). Machine Autonomy: Definition, Approaches, Challenges and Research Gaps. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Intelligent Computing. CompCom 2019. Advances in Intelligent Systems and Computing, vol 997. Springer, Cham. https://doi.org/10.1007/978-3-030-22871-2_24

Download citation

Publish with us

Policies and ethics