Skip to main content

Finding Balanced Bicliques in Bipartite Graphs Using Variable Neighborhood Search

  • Conference paper
  • First Online:
  • 733 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11328))

Abstract

The Maximum Balanced Biclique Problem (MBBP) consists of identifying a complete bipartite graph, or biclique, of maximum size within an input bipartite graph. This combinatorial optimization problem is solvable in polynomial time when the balance constraint is removed. However, it becomes \(\mathcal {NP}\)–hard when the induced subgraph is required to have the same number of vertices in each layer. Biclique graphs have been proven to be useful in several real-life applications, most of them in the field of biology, and the MBBP in particular can be applied in the design of programmable logic arrays or nanoelectronic systems. Most of the approaches found in literature for this problem are heuristic algorithms based on the idea of removing vertices from the input graph until a feasible solution is obtained; and more recently in the state of the art an evolutionary algorithm (MA/SM) has been proposed. As stated in previous works it is difficult to propose an effective local search method for this problem. Therefore, we propose the use of Reduced Variable Neighborhood Search (RVNS). This methodology is based on a random exploration of the considered neighborhoods and it does not require a local search.

This work has been partially founded by Ministerio de Economía y Competitividad with grant ref. TIN2015-65460-C2-2-P.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Yamani, A.A., Ramsundar, S., Pradhan, D.K.: A defect tolerance scheme for nanotechnology circuits. IEEE Trans. Circuits Syst. 54–I(11), 2402–2409 (2007)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity lemma. J. Algorithms 16(1), 80–109 (1994)

    Article  MathSciNet  Google Scholar 

  3. Baker, E.J., et al.: Ontological discovery environment: a system for integrating gene-phenotype associations. Genomics 94(6), 377–387 (2009)

    Article  Google Scholar 

  4. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th ISMB, pp. 93–103. AAAI Press (2000)

    Google Scholar 

  5. Chesler, E.J., Langston, M.A.: Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data. In: Eskin, E., Ideker, T., Raphael, B., Workman, C. (eds.) RRG/RSB -2005. LNCS, vol. 4023, pp. 150–165. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and multipartite clique problems. J. Algorithms 41(2), 388–403 (2001)

    Article  MathSciNet  Google Scholar 

  7. Feige, U., Kogan, S.: Hardness of approximation of the balanced complete bipartite subgraph problem. Technical report (2004)

    Google Scholar 

  8. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Hansen, P., Mladenović, N.: Variable Neighborhood Search, pp. 313–337. Springer, Boston (2014)

    MATH  Google Scholar 

  11. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 13(3), 502–524 (1992)

    Article  MathSciNet  Google Scholar 

  12. Mushlin, R.A., Kershenbaum, A., Gallagher, S.T., Rebbeck, T.R.: A graph-theoretical approach for pattern discovery in epidemiological research. IBM Syst. J. 46(1), 135–150 (2007)

    Article  Google Scholar 

  13. Ravi, S.S., Lloyd, E.L.: The complexity of near-optimal programmable logic array folding. SIAM J. Comput. 17(4), 696–710 (1988)

    Article  MathSciNet  Google Scholar 

  14. Sanderson, M.J., Driskell, A.C., Ree, R.H., Eulenstein, O., Langley, S.: Obtaining maximal concatenated phylogenetic data sets from large sequence databases. Mol. Biol. Evol. 20(7), 1036–1042 (2003)

    Article  Google Scholar 

  15. Tahoori, M.B.: Application-independent defect tolerance of reconfigurable nanoarchitectures. JETC 2(3), 197–218 (2006)

    Article  Google Scholar 

  16. Tahoori, M.B.: Low-overhead defect tolerance in crossbar nanoarchitectures. JETC 5(2), 11 (2009)

    Article  Google Scholar 

  17. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. In: ISMB, pp. 136–144 (2002)

    Google Scholar 

  18. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Franklin, M.J., Moon, B., Ailamaki, A. (eds.) SIGMOD Conference, pp. 394–405. ACM (2002)

    Google Scholar 

  19. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)

    Article  MathSciNet  Google Scholar 

  20. Yuan, B., Li, B.: A low time complexity defect-tolerance algorithm for nanoelectronic crossbar. In: International Conference on Information Science and Technology, pp. 143–148 (2011)

    Google Scholar 

  21. Yuan, B., Li, B.: A fast extraction algorithm for defect-free subcrossbar in nanoelectronic crossbar. ACM J. Emerg. Technol. Comput. Syst. (JETC) 10(3), 25 (2014)

    MathSciNet  Google Scholar 

  22. Yuan, B., Li, B., Chen, H., Yao, X.: A new evolutionary algorithm with structure mutation for the maximum balanced biclique problem. IEEE Trans. Cybern. 45(5), 1040–1053 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Sánchez-Oro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quintana, J.D., Sánchez-Oro, J., Duarte, A. (2019). Finding Balanced Bicliques in Bipartite Graphs Using Variable Neighborhood Search. In: Sifaleras, A., Salhi, S., Brimberg, J. (eds) Variable Neighborhood Search. ICVNS 2018. Lecture Notes in Computer Science(), vol 11328. Springer, Cham. https://doi.org/10.1007/978-3-030-15843-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15843-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15842-2

  • Online ISBN: 978-3-030-15843-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics