Skip to main content

Indoor Location and Tracking System Using Computer Vision

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11354))

Included in the following conference series:

  • 1165 Accesses

Abstract

In ubiquitous computing systems, determining the location of objects in the environment can provide basic information about the context of such objects. In closed environments an Interior Positioning System (IPS) helps to determine the location of people or robots through the use of a point-based reference system placed in the environment. Several mechanisms can be used to locate references, for example: light sensing, radio frequencies, sound, or images. In this paper, it is presented an image-based IPS that finds the location of a robot in a zone and provides functions to generate paths for the robot. The zones are identified through reference markers, which are analyzed in a server using image processing and Cloud Robotics, in order to minimize processing load in the robot. Once the marker is analyzed, a route is sent to the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonaccorsi, M., Fiorini, L., Cavallo, F., Esposito, R., Dario, P.: Design of cloud robotic services for senior citizens to improve independent living and personal health management. In: Andó, B., Siciliano, P., Marletta, V., Monteriú, A. (eds.) Ambient Assisted Living. BIOSYSROB, vol. 11, pp. 465–475. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18374-9_43

    Chapter  Google Scholar 

  2. Caron, C., Chamberland-Tremblay, D., Lapierre, C., Hadaya, P., Roche, S., Saada, M.: Indoor Positioning, pp. 1011–1019. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-17885-1

    Book  Google Scholar 

  3. Chen, Q., Petriu, E., Yang, X.: A comparative study of fourier descriptors and hu’s seven moment invariants for image recognition. In: Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513), vol. 1, pp. 103–106, May 2004

    Google Scholar 

  4. Cruz-Hernández, H., de la Fraga, L.G.: A fiducial tag invariant to rotation, translation, and perspective transformations. Pattern Recognit. 81, 213–223 (2018). http://www.sciencedirect.com/science/article/pii/S0031320318301146

    Article  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  6. Focardi, R., Luccio, F.L., Wahsheh, H.A.M.: Usable cryptographic QR codes. In: 2018 IEEE International Conference on Industrial Technology (ICIT), pp. 1664–1669, February 2018

    Google Scholar 

  7. Foundation, R.P.: What is a raspberry pi (2018). https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/

  8. Ifukube, T., Sasaki, T., Peng, C.: A blind mobility aid modeled after echolocation of bats. IEEE Trans. Biomed. Eng. 38(5), 461–465 (1991)

    Article  Google Scholar 

  9. La Delfa, G.C., Catania, V., Monteleone, S., De Paz, J.F., Bajo, J.: Computer vision based indoor navigation: a visual markers evaluation. In: Mohamed, A., Novais, P., Pereira, A., Villarrubia González, G., Fernández-Caballero, A. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 376, pp. 165–173. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19695-4_17

    Chapter  Google Scholar 

  10. Li, D. (ed.): RGB, pp. 1791–1791. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-48998-8

    Book  Google Scholar 

  11. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17(3), 579–590 (2013)

    Article  Google Scholar 

  12. Schwiegelshohn, F., Wehner, P., Werner, F., Gohringer, D., Hubner, M.: Enabling indoor object localization through bluetooth beacons on the radio robot platform. In: 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pp. 328–333, July 2016

    Google Scholar 

  13. Shabalina, K., Sagitov, A., Li, H., Magid, E.: Comparing fiducial marker systems occlusion resilience through a robot eye. In: 2017 10th International Conference on Developments in eSystems Engineering (DeSE), pp. 273–278, June 2017

    Google Scholar 

  14. Shang, W., Huang, H., Zhu, H., Lin, Y., Wang, Z., Qu, Y.: An improved kNN algorithm – fuzzy kNN. In: Hao, Y., et al. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 741–746. Springer, Heidelberg (2005). https://doi.org/10.1007/11596448_109

    Chapter  Google Scholar 

  15. Sharma, O., Pandey, J., Akhtar, H., Rathee, G.: Navigation in AR based on digital replicas. Vis. Comput. 34, 925–936 (2018)

    Article  Google Scholar 

  16. Song, Z., Jiang, G., Huang, C.: A survey on indoor positioning technologies. In: Zhou, Q. (ed.) ICTMF 2011. CCIS, vol. 164, pp. 198–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24999-0_28

    Chapter  Google Scholar 

  17. Starek, M.J.: Light Detection and Ranging (LIDAR), pp. 383–384. Springer, Dordrecht (2016). https://doi.org/10.1007/978-94-017-8801-4

    Book  Google Scholar 

  18. Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496–513 (1988)

    Article  Google Scholar 

  19. Wang, Q., Li, Z., Wang, J., Liu, S., Li, D.: A fast processing method of foreign fiber images based on HSV color space. In: Li, D., Chen, Y. (eds.) CCTA 2012. IAICT, vol. 392, pp. 390–397. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36124-1_47

    Chapter  Google Scholar 

  20. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Commun. Rev. 3(3), 3–11 (1999)

    Article  Google Scholar 

  21. Werner, M.: Basic Positioning Techniques, pp. 73–99. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10699-1_3

    Book  Google Scholar 

  22. Youssef, M.: Indoor Localization, pp. 1004–1010. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-17885-1

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián J. Ramírez-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramírez-Díaz, A.J., Rodríguez-García, J., Mendoza, S., Viveros, A.M. (2019). Indoor Location and Tracking System Using Computer Vision. In: Tang, Y., Zu, Q., Rodríguez García, J. (eds) Human Centered Computing. HCC 2018. Lecture Notes in Computer Science(), vol 11354. Springer, Cham. https://doi.org/10.1007/978-3-030-15127-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15127-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15126-3

  • Online ISBN: 978-3-030-15127-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics