Skip to main content

New Techniques for Standardization of Environmental Impact Assessment

  • Chapter
  • First Online:

Abstract

The exploitation of deep-sea mineral resources has not yet begun. In order to realize it in the future, various issues need to be addressed. One such issue is establishing an appropriate environmental impact assessment (EIA) technique and a supporting environmental research method. At present, knowledge on the deep-sea environment is quite poor, and existing environmental research methods rely on various methods used in ocean science. However, the goals of oceanography do not always align with those for EIA. Furthermore, the purposes of EIA and scientific research are different. Considering economic performance and technical convenience, scientific research methods are not necessarily suitable for EIA. In this context, this paper introduces three new technologies of turbulence measurement, niche modeling, and genetic connectivity survey method and suggests approaches for their standardization for the purpose of EIA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akamatsu, Y., Watanabe, Y., Goto, M., Inui, R., Katano, I., Nagano, M., Takahara, T., & Minamoto, T. (2017). Water sampling for environmental DNA surveys by using an unmanned aerial vehicle. Limnology and Oceanography: Methods, 15(11.) Wiley Online Library), 939–944.

    Google Scholar 

  • Anderson, R. P., & Gonzalez, I., Jr. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15.) Elsevier), 2796–2811.

    Article  Google Scholar 

  • Arellano, S. M., & Young, C. M. (2009). Spawning, development, and the duration of larval life in a deep-sea cold-seep mussel. The Biological Bulletin, 216(2), 149–162. https://doi.org/10.2307/25470737.

    Article  Google Scholar 

  • Arellano, S. M., Van Gaest, A. L., Johnson, S. B., Vrijenhoek, R. C., & Young, C. M. (2014). Larvae from deep-sea methane seeps disperse in surface waters. Proceedings of the Royal Society B: Biological Sciences, 281(1786), 20133276. https://doi.org/10.1098/rspb.2013.3276.

    Article  Google Scholar 

  • Beaulieu, S. E., Mullineaux, L. S., Adams, D. K., & Mills, S. W. (2009). Comparison of a sediment trap and plankton pump for time series sampling of larvae near deep-sea hydrothermal vents. Limnology and Oceanography: Methods, 7, 235–248.

    Google Scholar 

  • Beaulieu, S. E., Baker, E. T., German, C. R., & Maffei, A. (2013). An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems, 14(11), 4892–4905. https://doi.org/10.1002/2013GC004998.

    Article  Google Scholar 

  • Beedessee, G., Watanabe, H., Ogura, T., Nemoto, S., Yahagi, T., Nakagawa, S., Nakamura, K., Takai, K., Koonjul, M., & Marie, D. E. P. (2013). High connectivity of animal populations in deep-sea hydrothermal vent fields in the Central Indian Ridge relevant to its geological setting. PLoS One, 8(12), e81570. https://doi.org/10.1371/journal.pone.0081570.

    Article  Google Scholar 

  • Billings, A., Kaiser, C., Young, C. M., Hiebert, L. S., Cole, E., Wagner, J. K. S., & Van Dover, C. L. (2017). SyPRID sampler: A large-volume, high-resolution, autonomous, deep-ocean precision plankton sampling system. Deep-Sea Research II, 137, 297–306.

    Article  Google Scholar 

  • Buckeridge, J. S., Linse, K., & Jackson, J. A. (2013). Vulcanolepas scotiaensis sp. nov., a new deep-sea scalpelliform barnacle (Eolepadidae: Neolepadinae) from hydrothermal vents in the Scotia Sea, Antarctica. Zootaxa, 3745, 551–568.

    Article  Google Scholar 

  • Chen, C., Copley, J. T., Linse, K., & Rogers, A. D. (2015). Low connectivity between ‘scaly-foot gastropod’ (Mollusca: Peltospiridae) populations at hydrothermal vents on the Southwest Indian Ridge and the Central Indian Ridge. Organisms Diversity and Evolution, 15, 663–670.

    Article  Google Scholar 

  • Clark, M. R., Rouse, H., Lamarche, G., Ellis, J., & Hickey, C. (2017). Preparation of environmental impact assessments: General guidelines for offshore mining and drilling with particular reference to New Zealand. NIWA Science and Technology Series (pp. 105).

    Google Scholar 

  • Clarke, C. L., Jamieson, G. S., & Road, H. B. (2006). Identification of ecologically and biologically significant areas in the Pacific North Coast Integrated Management Area: Phase II. Final Report Pacific Biological Station Canadian Technical Report of Fisheries and Aquatic Sciences (pp. 2686).

    Google Scholar 

  • CRP. (2014). Marine consent application and environmental impact assessment (pp. 452). Wellington: Chatham Rock Phosphate Limited.

    Google Scholar 

  • Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499–510.

    Article  Google Scholar 

  • Doi, T., Nakata, K., Kubota, M., & Aoki, S. (1999). Environmental study on the deep-sea mining of manganese nodules in the northeastern tropical Pacific –modeling the sediment-laden negative buoyant flow. Proceedings of the Third Ocean Mining Symposium (pp. 163–168).

    Google Scholar 

  • Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction (ecology, biodiversity and conservation). Cambridge, UK: Cambridge University Press. 338 pp.

    Book  Google Scholar 

  • Fukubat, et al. (2018). Lander observatory with non-contact power supply and communication interfaces for long-term ecosystem monitoring in deep-sea. Proceedings of the Twenty-eighth (2018) International Ocean and Polar Engineering Conference Sapporo, Japan, June 10–15, 2018 (pp. 124–127).

    Google Scholar 

  • Fukushima, T. (2017). Technical feasibility- brief orientation-. Dialogue on practical utility of EIA technology – proponent, potential users, administrator and independent organization. ISA Technical Study NO 18 (pp. 42–43). International Seabed Authority.

    Google Scholar 

  • Fukushima, T., & Nishijima, M. (2017). Taxonomic problems in environmental impact assessment (EIA) linked to ocean mining and possibility of new technology developments. In R. Sharma (Ed.), Deep-sea mining (p. 535). Berlin: Springer.

    Google Scholar 

  • Furuichi, N., & Hibiya, T. (2015). Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model. Journal of Geophysical Research: Oceans, 120, 2350–2369.

    Google Scholar 

  • Furuichi, N., & Higashi, H. (2014). A numerical study on suspended particulate matter dynamics in the coastal ocean bottom boundary layer using LES. Japan Society of Civil Engineers, Ser. B2, (Coastal Engineering), 70(2), I_1096–I_1100. (in Japanese).

    Article  Google Scholar 

  • Furuichi, N., Hibiya, T., & Niwa, Y. (2012). Assessment of turbulence closure models for resonant inertial response in the oceanic mixed layer using a large eddy simulation model. Journal of Oceanography, 68, 285–294.

    Article  Google Scholar 

  • Furushima, Y., & Yamamoto, H. (2015). Periodic behavior of deep sea current in the Hatoma Knoll hydrothermal system. In J.-I. Ishibashi et al. (Eds.), Subseafloor biosphere linked to hydrothermal systems: TAIGA concept (pp. 625–637). Tokyo: Springer Japan.

    Google Scholar 

  • Furushima, Y., Furuichi, N., Higashi, H., Koshikawa, H., & Yamamoto, H. (2016). Periodic behaviors of deep-ocean flow and turbulent mixing in hydrothermal field on the Okinawa Trough, Japan. Proceedings of the OCEANS 2016 MTS/IEEE MONTEREY Conference & Exhibition. ISBN CD-ROM:978-1-5090-1538-2.

    Google Scholar 

  • Furushima, Y., Higashi, H., Fukuhara, T., Furuichi, N., & Yamamoto, H. (2017). Direct measurement of near-bottom turbulence in deep ocean for predicting behavior of suspended particles in Sagami Bay and the Okinawa Trough, Japan. Proceedings of the OCEANS 2017 MTS/IEEE Anchorage Conference & Exhibition. ISBN CD-ROM: 978-0-692-93559-0.

    Google Scholar 

  • Furushima, Y., Higashi, H., Fukuhara, T., Matsuda, T., Yamamoto, H., Furuichi, N., & Fukushima, T. (2018). Periodic behavior of abyssal flow in Okinawa trough hydrothermal fields. In Proceedings of the 28th International Ocean and Polar Engineering Conference (Vol. 1, pp. 119–123). Sapporo: ISOPE. isbn:978-1-880653-87-6.

    Google Scholar 

  • Furuuchi, N., Higashi, H., & Furushima, Y. (2016). Towards modeling dispersion of suspended particulate matter caused by deep-ocean mining activity –a large-eddy simulation study on tidal bottom boundary layer. Aquabiology, 38(2), 145–150. (in Japanese).

    Google Scholar 

  • Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: Where to go from here? Diversity and Distributions, 16(3), 331–342. https://doi.org/10.1111/j.1472-4642.2010.00652.x.

    Article  Google Scholar 

  • Glasson, J., Therivel, R., & Chadwik, A. (1995). Introduction to environmental impact assessment. Landscape and Urban Planning, 32(3.) Routledge), 197–198. https://doi.org/10.1016/0169-2046(95)90007-1.

    Article  Google Scholar 

  • Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecological Monographs, 77(4.) Wiley Online Library), 615–630.

    Article  Google Scholar 

  • Hashimoto, E., & Takasugi, Y. (1998). Measurement of the vertical mixing strength in an inner bay by floating-MSP. Journal of Coastal engineering, 45, 966–970. (in Japanese).

    Article  Google Scholar 

  • Higashi, H., & Maki, H. (2012). Field observations on oxygen-poor water masses and vertical mixing strength in Tokyo Bay. Japan Society of Civil Engineers, Ser. B2, (Coastal Engineering), 68(2), I_966–I_970. (in Japanese).

    Google Scholar 

  • Higashi, H., Furushima, Y., Furuichi, N., & Fukuhara, T. (2017). Performance of vertical mixing schemes based on in-situ measurement of deep sea turbulence in Sagami Bay. Japan Society of Civil Engineers, Ser. B2, (Coastal Engineering), 73(2), I_79–I_84. (in Japanese).

    Article  Google Scholar 

  • International Seabed Authority. (2011). Environmental Management Plan for the ClarionClippertonZone. https://www.isa.org.jm/sites/default/files/files/documents/isba-17ltc-7_0.pdf. Accessed 13 Sept 2018.

  • International Seabed Authority. (2013). Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the area. https://www.isa.org.jm/sites/default/files/files/documents/isba-19ltc-8_0.pdf. Accessed 13 Sept 2018.

  • International Union for Conservation of Nature. (2018). Issues brief. http://cmsdata.iucn.org/resources/issues-briefs/deep-sea-mining. Accessed 18 Spt. 1018.

  • Ito, A. (2017). Current status of China Drone business: Underwater drone venture from China appears one after another is “DJI underwater” appear? Drone Journal. https://www.watch.impress.co.jp/headline/docs/extra/drone/1092800.html Accessed 24 Nov 2017.

  • JAMSTEC. (2017a). Acquisition of long-term monitoring images near the deep seafloor by Edokko Mark I, OceanBestPractices, UNESCO/IOC Project office for IODE Oostende. https://www.oceanbestpractices.net/handle/11329/326. Accessed 25 Sept 2018.

  • JAMSTEC. (2017b). Next-generation technology for ocean resources exploration (Zipangu in the Ocean). https://www.jamstec.go.jp/sip/en/index.html. Accessed 18 Sept 2018.

  • JAMSTEC. (2018). Automatic classification of the ocean floor by deep learning and draw species distribution maps. Blue Earth, 155, 16–19. (in Japanese).

    Google Scholar 

  • Jankowski, J. A., Malcherek, A., & Zielke, W. (1996). Numerical modeling of suspended sediment due to deep-sea mining. Journal of Geophysical Research, 101(C2), 3545–3560.

    Article  Google Scholar 

  • JOGMEC. (2017). Exploration and technological development for deep seabed polymetallic sulphides. http://www.jogmec.go.jp/english/stockpiling/metal_10_000002.html Accessed 18 Sept 2018.

  • Kyuno, A., Shintaku, M., Fujita, Y., Matsumoto, H., Utsumi, M., Watanabe, H., Fujiwara, Y., & Miyazaki, J.-I. (2009). Dispersal and differentiation of deep-sea mussels of the genus bathymodiolus (Mytilidae, Bathymodiolinae). Journal of Marine Biology, 2009, 625672. https://doi.org/10.1155/2009/625672.

    Article  Google Scholar 

  • Lindsay, D. J., Yoshida, H., Ishibashi, S., Umetsu, M., Yamaguchi, A., Yamamoto, H., Nishikawa, J., Reimer, J.D., Watanabe, H., Fujikura, K., & Maruyama, T. (2013). The uROV PICASSO, the Visual Plankton Recorder, and other attempts to image plankton. Proceedings of the International Symposium on Underwater Technology, 2013: doi: https://doi.org/10.1109/UT.2013.6519854.

  • Lindsay, D. J., Nishikawa, J., Sunahara, K., Fujiwara, Y., & Yamaguchi, A. (2017). First record of the doliolid genus Paradoliopsis in the Pacific Ocean. Plankton and Benthos Research, 12(1), 66–70.

    Article  Google Scholar 

  • Marsh, A. G., Mullineaux, L. S., Young, C. M., & Manahan, D. T. (2001). Larval dispersal potential of the tubeworm Riftiapachyptila at deep-sea hydrothermal vents. Nature, 411(6833), 77–80. https://doi.org/10.1038/35075063.

    Article  Google Scholar 

  • Matsui, T., Sugishima, H., Okamoto, N., & Igarashi Y. (2018). Evaluation of turbidity and resedimentation through seafloor disturbance experiments for assessment of environmental impacts associated with exploitation of seafloor massive sulfides mining. Proc. of the Twenty-eighth (2018) International Ocean and Polar Engineering Conference Sapporo, Japan, June 10–15, 2018, (pp. 124–127).

    Google Scholar 

  • Mitarai, S., Watanabe, H., Nakajima, Y., Shchepetkinc, A. F., & McWilliams, J. C. (2016). Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proceedings of the National Academy of Science, 113(11), 2976–2981.

    Article  Google Scholar 

  • Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Society Open Science, 2, 150088. https://doi.org/10.1098/rsos.150088.

    Article  Google Scholar 

  • Miyata, Y., & Fukushima, T. (2018) Comparison of components and description for benthic organisms between existing environmental impact statements and administrative frameworks. Proceedings of the Twenty-eighth (2018) International Ocean and Polar Engineering Conference Sapporo, Japan, June 10–15, 2018, (pp. 128–135).

    Google Scholar 

  • Miyazaki, J.-I., Martins, L. D. O., Fujita, Y., Matsumoto, H., & Fujiwara, Y. (2010). Evolutionary process of deep-sea <italic>Bathymodiolus</italic> mussels. PLoS One, 5(4), e10363. https://doi.org/10.1371/journal.pone.0010363.

    Article  Google Scholar 

  • Mullineaux, L. S., Wiebe, P. H., & Baker, E. T. (1995). Larvae of benthic invertebrates in hydrothermal vent plumes over Juan de Fuca Ridge. Marine Biology, 122, 585–596.

    Article  Google Scholar 

  • Mullineaux, L. S., Adams, D. K., Mills, S. W., & Beaulieu, S. E. (2010). Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7829–7834. https://doi.org/10.1073/pnas.0913187107.

    Article  Google Scholar 

  • Mullineaux, L. S., Le Bris, N., Mills, S. W., Henri, P., Bayer, S. R., Secrist, R. G., & Siu, N. (2012). Detecting the influence of initial pioneers on succession at deep-sea vents. PLoS One, 7(12), e50015.

    Article  Google Scholar 

  • Mullineaux, L. S., Metaxas, A., Beaulieu, S. E., Bright, M., Gollner, S., Grupe, B. M., Herrera, S., Kellner, J., Levin, L. A., Mitarai, S., Neubert, M. G., Thurnber, A. M., Tunnicliffe, V., Watanabe, H. K., & Won, Y.-J. (2018). Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework. Frontiers in Marine Science, 5, 49. https://doi.org/10.3389/fmars.2018.00049.

    Article  Google Scholar 

  • Nagao, M., Hashimoto, E., & Takasugi, Y. (2004). Measurement of the vertical mixing strength in the Seto Inland Sea. Journal of Coastal engineering, 51, 946–950. (in Japanese).

    Article  Google Scholar 

  • Nagao, M., Hashimoto, E., Takasugi, Y., Chiba, S., & Yamagata, Y. (2005). Measurement of the vertical mixing strength in the Ago Bay. Journal of Coastal engineering, 52, 341–345. (in Japanese).

    Article  Google Scholar 

  • Nakamura, M., Nakajima, Y., Watanabe, H. K., Sasaki, T., Yamamoto, H., & Mitarai, S. (2018). Spatial variability in recruitment of benthos near drilling sites in the Iheya North hydrothermal field in the Okinawa Trough. Deep-Sea Research I, 135, 63–75. https://doi.org/10.1016/j.dsr.2018.03.009.

    Article  Google Scholar 

  • Nakata, K., Kubota, M., Aoki, S., & Taguchi, K. (1997). Dispersion of resuspended sediment by ocean mining activity -modelling study. Proceedings of International Symposium on Environmental Studies for Deep-Sea Mining (pp. 169–186).

    Google Scholar 

  • Namphos. (2012). Environmental impact assessment for the proposed dredging of phosphate enriched sediments from marine license area no. 170. (pp. 99). Cape Town: Namibian Marine Phosphate (Pty), Ltd.

    Google Scholar 

  • Nautilus Minerals Niugini Limited (Nautilus). (2008). Environmental impact statement, Solwara 1 Project. Nautilus Minerals Niugini Limited, Main Report, Nautilus Minerals Niugini Limited.

    Google Scholar 

  • Nishikawa, H., Toyoda, T., Masuda, S., Ishikawa, Y., Sasaki, Y., Igarashi, H., Sakai, M., Seito, M., & Awaji, T. (2015). Wind-induced stock variation of the neon flying squid (Ommastrephesbartramii) winter–spring cohort in the subtropical North Pacific Ocean. Fisheries Oceanography, 24(3).Wiley Online Library), 229–241.

    Article  Google Scholar 

  • Pradillon, F., Shillito, B., Young, C. M., & Gaill, F. (2001). Deep-sea ecology: Developmental arrest in vent worm embryos. Nature, 413(6857), 698–699.

    Article  Google Scholar 

  • Rochette, S., Huret, M., Rivot, E., & Pape, O. L. (2012). Coupling hydrodynamic and individual-based models to simulate long-term larval supply to coastal nursery areas. Fisheries Oceanography, 21(4.) Wiley Online Library), 229–242.

    Article  Google Scholar 

  • Saita, T., Yano, S., Tai, A., Shiki, S., Shigeta, S., & Komatsu, T. (2008). Field observation of vertical mixing strength in Ariake Sea during winter. Journal of Coastal engineering, 55, 421–425. (in Japanese).

    Article  Google Scholar 

  • Shcheglovitova, M., & Anderson, R. P. (2013). Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling, 269. Elsevier, 9–17.

    Article  Google Scholar 

  • Sommer, S. A., Van Woudenberg, L., Lenz, P. H., Cepeda, G., & Goetze, E. (2017). Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre. Molecular Ecology, 26, 6136–6156.

    Article  Google Scholar 

  • Sugishima, H., Kato, S., Matsui, T., Naito, K., Maeda, N., & Miwa, T. (2018). Utilization of a free-fall deep-sea camera lamder (Edokko Mark1) in environmental baseline survey of the deep sea mining exploration area. Proceedings of the 27th Ocean Engineering Symposium, Tokyo, August 7–8, 2018 (in Japanese).

    Google Scholar 

  • Sun, J., Zhang, Y., Xu, T., Zhang, Y., Mu, H., Zhang, Y., Lan, Y., Fields, C. J., Hui, J. H. L., Zhang, W., Li, R., Nong, W., Cheung, F. K. M., Qiu, J.-W., & Qian, P.-Y. (2017). Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nature Ecology and Evolution, 1, 0121. https://doi.org/10.1038/s41559-017-0121.

    Article  Google Scholar 

  • Suyama, Y., & Matsuki, Y. (2015). MIG-seq: An effective PCRbased method for genome-wide single-nucleotide polymorphism genotyping using the next -generation sequencing platform. Scientific Reports, 5, 16963. https://doi.org/10.1038/srep16963.

    Article  Google Scholar 

  • Suzuki, Y., Kojima, S., Sasaki, T., Suzuki, M., Utsumi, T., Watanabe, H., Urakawa, H., Tsuchida, S., Nunoura, T., Hirayama, H., Takai, K., Nealson, K. H., & Horikoshi, K. (2006). Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific. Applied and Environmental Microbiology, 72(2), 1388–1393. https://doi.org/10.1128/AEM.72.2.1388-1393.2006.

    Article  Google Scholar 

  • Suzuki, K., Yoshida, K., Watanabe, H., & Yamamoto, H. (2018). Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Scientific Reports, 8, 9364. https://doi.org/10.1038/s41598-018-27596-7.

    Article  Google Scholar 

  • Tanaka, K., Arai, T., Kishira, T., Yamauchi, T., Saito, H., Hanafusa, Y., Sonoda, A., Furushima, Y., Yamamoto, H., Fujikura, K., & Maruyama, T. (2014). Publication and application of marine biological information. JAMSTEC Report of Research and Development, 18, 81–88.

    Article  Google Scholar 

  • Teixeira, S., Serrao, E. A., & Arnaud-Haond, S. (2012). Panmixia in a fragmented and unstable environment: The hydrothermal shrimp Rimicarisexoculata disperses extensively along the Mid-Atlantic Ridge. PLoS One, 7(6), e38521.

    Article  Google Scholar 

  • Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence (pp. 1–26). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Underwood, A. J. (1997). Experiments in ecology: Their logical design and interpretation using analysis of variance. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Vrijenhoek, R. C. (2010). Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Molecular Ecology, 19(20), 4391–4411. https://doi.org/10.1111/j.1365-294X.2010.04789.x.

    Article  Google Scholar 

  • Wang, S., Meyer, E., McKay, J. K., & Matz, M. V. (2012). 2b-RAD: A simple and flexible method for genome-wide genotyping. Nature Methods, 9(8), 808–810. http://www.nature.com/nmeth/journal/v9/n8/abs/nmeth.2023.html#supplementary-information.

    Article  Google Scholar 

  • Watanabe, H., Kado, R., Kaida, M., Tsuchida, S., & Kojima, S. (2006). Dispersal of vent-barnacle (genus Neoverruca) in the Western Pacific. Chaiers de Biologie Marine, 47, 353–357.

    Google Scholar 

  • Wiebe, P. H., & Benfield, M. C. (2003). From the Hensen net toward four-dimensional biological oceanography. Progress in Oceanography, 56, 7–136.

    Google Scholar 

  • Xiaodong, S., Qi, Y., Chen, G., Liang, C., Rolf, G. L., Brett, P., & Li, H. (2017). An expendable microstructure profiler for deep ocean measurements. Journal of Atmospheric and Oceanic Technology, 34, 153–165.

    Article  Google Scholar 

  • Xu, T., Sun, J., Lv, J., Watanabe, H. K., Li, T., Zou, W., Rouse, G. W., Wang, S., Qian, P.-Y., Bao, Z., & Qiu, J.-W. (2017). Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: Potential use in population genomics and cross-species application. Deep-Sea Research II, 137, 318–326.

    Article  Google Scholar 

  • Yahagi, T., Watanabe, H. K., Kojima, S., & Kano, Y. (2017). Do larvae from deep-sea hydrothermal vents disperse in surface waters? Ecology, 98, 1524–1534.

    Article  Google Scholar 

  • Yamakita, T. (2018). Change of the ocean after the Great East Japan earthquake -utilization of Geographic Information System and GIScience-. E-Research in Species Biology 2(1). The Society for the Study of Species Biology: in press.

    Google Scholar 

  • Yamakita, T., & Nakaoka, M. (2009). Scale dependency in seagrass dynamics: How does the neighboring effect vary with grain of observation? Population Ecology, 51(1.) Springer Japan), 33–40. https://doi.org/10.1007/s10144-008-0119-z.

    Article  Google Scholar 

  • Yamakita, T., Watanabe, K., & Nakaoka, M. (2011). Asynchronous local dynamics contributes to stability of a seagrass bed in Tokyo Bay. Ecography, 34(3), 519–528. https://doi.org/10.1111/j.1600-0587.2010.06490.x.

    Article  Google Scholar 

  • Yamakita, T., Sudo, K., Jintsu-Uchifune, Y., Yamamoto, H., & Shirayama, Y. (2017). Identification of important marine areas using ecologically or biologically significant areas (EBSAs) criteria in the East to Southeast Asia region and comparison with existing registered areas for the purpose of conservation. Marine Policy, 81, 273–284. https://doi.org/10.1016/j.marpol.2017.03.040.

    Article  Google Scholar 

  • Yamakita, T., Yokooka, H., Fujiwara, Y., Kawato, M., Tsuchida, S., Ishibashi, S., Kurokawa, T., & Fujikura, K. (2018). Image dataset of ophiuroid and other deep sea benthic organisms in 2015 extracted from the survey off Sanriku, Japan, by the research following the Great East Japan Earthquake 2011. Ecological Research, 33(2), 285–285. https://doi.org/10.1007/s11284-018-1571-7.

    Article  Google Scholar 

  • Yamakita, T., Sodeyama, F., Wanpetch, N., Watanabe, K., & Nakaoka, M. (under review). Application of deep learning techniques for determining the spatial extent and classification of seagrass beds, Trang, Thailand submitted to Botanica Marina.

    Google Scholar 

  • Yamamoto, H., Tanaka, K., Fujikura, K., & Maruyama, T. (2012). BISMaL: Biological Information System for Marine Life and role for biodiversity research. In The Biodiversity Observation Network in the Asia-Pacific Region (pp. 247–256). New York: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Next-generation technology for ocean resources exploration” (Lead agency: JAMSTEC). We would like to thank the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Tohoku Ecosystem-Associated Marine Sciences (TEAMS), Grant-in-Aid for Scientific Research on Innovative Areas TAIGA (20109003), the Environment Research and Technology Development Fund (S-15 Predicting and Assessing Natural Capital and Ecosystem Services; S-9) of the Ministry of the Environment, and the Canon Foundation, for their partial support of this research. Additionally, we thank the members of each project for helping in data collection and supporting our survey. The authors would like to thank Hiromi Kayama Watanabe (JAMSTEC) who helped make this paper and also Fumiaki Sodeyama, Katsunori Fujikura, Yukiko Nagai, Masashi Tsuchiya (JAMSTEC), Sachiko Ono (Marine Works Japan, Ltd.), Hiroyuki Yokooka, and Tadayuki Kurokawa (IDEA Consultants, Inc.) for supporting the creation of data for habitat mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Fukushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furushima, Y., Yamakita, T., Miwa, T., Lindsay, D., Fukushima, T., Shirayama, Y. (2019). New Techniques for Standardization of Environmental Impact Assessment. In: Sharma, R. (eds) Environmental Issues of Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-12696-4_11

Download citation

Publish with us

Policies and ethics