Skip to main content

Anesthetic Implications of Duchenne Muscular Dystrophy and the Surgical Repair of Scoliosis

  • Chapter
  • First Online:

Abstract

Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease worldwide. While there is no cure for this progressive and debilitating disease, improvements in the supportive care of patients with DMD have significantly improved their life expectancy, thus making it a disease that can be encountered outside of pediatric clinical settings. DMD is caused by an X-linked recessive mutation in the gene coding for dystrophin, an integral protein in the cell membrane and cytoskeleton of muscle cells. Besides significant muscle weakness, medical conditions associated with DMD include cardiomyopathy, respiratory failure, restrictive lung disease, and scoliosis. Anesthetic management of patients with DMD includes a thorough preoperative evaluation, the availability of advanced airway equipment, aspiration precautions, and careful attention to positioning. While patients with DMD are not at risk for malignant hyperthermia specifically, they are at risk for anesthesia-induced reactions including hyperkalemia, rhabdomyolysis, and cardiac arrest without other signs of a hypermetabolic state. Therefore, malignant hyperthermia precautions are recommended. Spinal fusion is a common major surgery that patients with DMD require. The risk of surgical complications such as neurological injury and blood loss is higher for patients with neuromuscular scoliosis than those with idiopathic scoliosis due to the need for longer and more complex surgeries to fuse more levels of the spine. Motor and sensory neuromonitoring is the standard of care for these procedures even though the quality of baseline signals may be difficult to obtain due to muscle weakness. Techniques to minimize blood loss and allogenic transfusions in high-risk patients include administration of epoetin alfa, autologous donation, acute normovolemic hemodilution, controlled hypotension, intrathecal morphine administration, cell saver, and antifibrinolytic agents. Anesthesiologists may also consider indices to guide volume resuscitation in scoliosis surgery such as variation in aortic blood flow on echocardiography and esophageal Doppler monitoring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sarnat HB. 601.1 Duchenne and Becker muscular dystrophies. In:Nelson textbook of pediatrics. Philadelphia: W.B. Saunders; 2000. p. 2119–22.

    Google Scholar 

  2. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, Mcdonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93.

    Article  PubMed  Google Scholar 

  3. Verhaert D, Richards K, Rafael-Fortney JA, Raman SV. Cardiac involvement in patients with muscular dystrophies: magnetic resonance imaging phenotype and genotypic considerations. Circ Cardiovasc Imaging. 2011;4:67–76.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sussman M. Duchenne muscular dystrophy. J Am Acad Orthop Surg. 2002;10:138–51.

    Article  PubMed  Google Scholar 

  5. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, Mcdonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9:94–107.

    Article  Google Scholar 

  6. Birnkrant DJ, Panitch HB, Benditt JO, et al. American College of Chest Physicians consensus statement on the respiratory and related management of patients with Duchenne muscular dystrophy undergoing anesthesia or sedation. Chest. 2007;132:1977–86.

    Article  PubMed  Google Scholar 

  7. Litman RS. Management of general anesthesia. In:Pediatric anesthesia: the requisites in anesthesia. St. Louis: Elsevier Mosby; 2004. p. 153–4.

    Google Scholar 

  8. Anectine, succinylcholine. Black box warnings. Epocrates, Inc. 2017. https://online.epocrates.com/drugs/198211/Anectine/Black-Box-Warnings. Web. 4 Sept 2015.

  9. Hayes J, Veyckemans F, Bissonnette B. Duchenne muscular dystrophy: an old anesthesia problem revisited. Pediatr Anesth. 2007;18:100–6.

    Google Scholar 

  10. Brownell AK, Paasuke RT, Elash A. Malignant hyperthermia in Duchenne muscular dystrophy. Anesthesiology. 1983;58:180–2.

    Article  CAS  PubMed  Google Scholar 

  11. Yemen TA, McClain E. Muscular dystrophy, anesthesia and the safety of inhalational agents revisited again. Pediatr Anesth. 2006;16:105–8.

    Article  Google Scholar 

  12. Goresky GV, Cox RG. Inhalation anesthetics and Duchenne’s muscular dystrophy. Can J Anaesth. 1999;46:525–8.

    Article  CAS  PubMed  Google Scholar 

  13. American Heart Association Guidelines for Cardiopulmonary. Resuscitation and emergency cardiovascular care. Circulation. 2005;112:IV-1–IV-203.

    Article  Google Scholar 

  14. Spiegel DA, Dormans JP. 671: the spine. In:Nelson textbook of pediatrics. Philadelphia: W.B. Saunders; 2000. p. 2365–73.

    Google Scholar 

  15. Gibson PR. Anaesthesia for correction of scoliosis in children. Anaesth Intensive Care. 2004;62:548–59.

    Article  Google Scholar 

  16. Winter RB, Lonstein JR. Juvenile and adolescent scoliosis. In: Herkowitz H, Garfin SR, Balderstone RA, Eismont FJ, Bell GR, Wiesal SW, editors. Rothman-Simeone, the spine. 4th ed. Philadelphia: WB Saunders Company; 1999. p. 325–72.

    Google Scholar 

  17. Shiga T, Wajima Z, Inoue T, Sakamoto A. Aprotinin in major orthopedic surgery: a systematic review of randomized controlled trials. Anesth Analg. 2005;10:1602–7.

    Article  Google Scholar 

  18. Vialle R, Thévenin-Lemoine C, Mary P. Neuromuscular scoliosis. Orthop Traumatol Surg Res. 2013;99:S124–39.

    Article  CAS  PubMed  Google Scholar 

  19. Coe JD, Arlet V, Donaldson W, Berven S, Hanson DS, Mudiyam R, Perra JH, Shaffrey CI. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine. 2006;31:345–9.

    Article  PubMed  Google Scholar 

  20. Memtsoudis SG, Vougioukas VI, Ma Y, Gaber-Baylis LK, Girardi FP. Perioperative morbidity and mortality after anterior, posterior, and anterior/posterior spine fusion surgery. Spine. 2011;36:1867–77.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weiss HR, Goodall D. Rate of complications in scoliosis surgery – a systematic review of the pub med literature. Scoliosis. 2008;3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reames DL, Smith JS, Fu KM, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Database. Spine. 2011;36:1484–91.

    Article  PubMed  Google Scholar 

  23. Divecha HM, Siddique I, Breakwell LM, Millner PA. Complications in spinal deformity surgery in the United Kingdom: 5-year results of the Annual British Scoliosis Society National Audit of Morbidity and Mortality. Euro Spine J. 2014;23:55–60.

    Article  Google Scholar 

  24. Barash PG, Cullen BF, Stoelting RK. Anesthesia for neurosurgery. In:Clinical anesthesia. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 996–1003.

    Google Scholar 

  25. Hammett TC, Boreham B, Quraishi NA, Mehdian SMH. Intraoperative spinal cord monitoring during the surgical correction of scoliosis due to cerebral palsy and other neuromuscular disorders. Eur Spine J. 2013;22:38–41.

    Article  PubMed Central  Google Scholar 

  26. Dicindio S, Theroux M, Shah S, Miller F, Dabney K, Brislin RP, Schwartz D. Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine. 2003;28:1851–5.

    Article  PubMed  Google Scholar 

  27. Fehlings MG, Brodke DS, Norvell DC, Dettori JR. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine. 2010;35:S37–46.

    Article  PubMed  Google Scholar 

  28. Eccher M. Intraoperative neurophysiologic monitoring: are we really that bad? J Clin Neurophysiol. 2012;29:157–9.

    Article  PubMed  Google Scholar 

  29. Nuttall GA, Horlocker TT, Santrach PJ, Oliver WC, Dekutoski MB, Bryant S. Predictors of blood transfusions in spinal instrumentation and fusion surgery. Spine. 2000;25:596–601.

    Article  CAS  PubMed  Google Scholar 

  30. Guay J, Haig M, Lortie L, Guertin MC, Poitras B. Predicting blood loss in surgery for idiopathic scoliosis. Can J Anaesth. 1994;41:775–81.

    Article  CAS  PubMed  Google Scholar 

  31. Vitale MG, Privitera DM, Matsumoto H, Gomez JA, Waters LM, Hyman JE, Roye DP. Efficacy of preoperative erythropoietin administration in pediatric neuromuscular scoliosis patients. Spine. 2007;32:2662–7.

    Article  PubMed  Google Scholar 

  32. Murray DJ, Forbes RB, Titone MB, Weinstein SL. Transfusion management in pediatric and adolescent scoliosis surgery: efficacy of autologous blood. Spine. 1997;22:2735–40.

    Article  CAS  PubMed  Google Scholar 

  33. Edler A, Murray DJ, Forbes RB. Blood loss during posterior spinal fusion surgery in patients with neuromuscular disease: is there an increased risk? Paediatr Anaesth. 2003;13:818–22.

    Article  PubMed  Google Scholar 

  34. Lee JH, Kim JT, Yoon SZ, Lim YJ, Jeon Y, Bahk JH, Kim CS. Evaluation of corrected flow time in oesophageal Doppler as a predictor of fluid responsiveness. Br J Anaesth. 2007;99:343–8.

    Article  PubMed  Google Scholar 

  35. Tzortzopoulou A, Cepeda MS, Schumann R, Carr DB. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Protoc Cochrane Database Syst Rev. 1996:1–26.

    Google Scholar 

  36. Forst J, Forst R, Leithe H, Maurin N. Platelet function deficiency in Duchenne muscular dystrophy. Neuromuscul Disord. 1998;8:46–9.

    Article  CAS  PubMed  Google Scholar 

  37. Turturro F, Rocca B, Gumina S, De Cristofaro R, Mangiola F, Maggiano N. Impaired primary hemostasis with normal platelet function in Duchenne muscular dystrophy during highly-invasive spinal surgery. Neuromuscul Disord. 2005;15:532–40.

    Article  PubMed  Google Scholar 

  38. Vitale MG, Stazzone EJ, Gelijns AC, et al. The effectiveness of preoperative erythropoietin in averting allogeneic blood transfusion among children undergoing scoliosis surgery. J Pediatr Ortho Surg. 1998;7:203–9.

    Article  CAS  Google Scholar 

  39. Roye DP, Rothstein P, Rickert JB, et al. The use of preoperative erythropoietin in scoliosis surgery. Spine. 1992;17:S204–5.

    Article  PubMed  Google Scholar 

  40. MacEwen G, Bennett E, Guille J. Autologous blood transfusions in children and young adults with low body weight undergoing spinal surgery. J Pediatr Orthop. 1990;10:750–3.

    Article  CAS  PubMed  Google Scholar 

  41. Simpson MB, Georgopoulos G, Orsini E, et al. Autologous transfusions for orthopaedic procedures at a children’s hospital. J Bone Joint Surg Am. 1992;74:652–8.

    Article  CAS  PubMed  Google Scholar 

  42. McNeil TW. Controlled hypotensive anesthesia in scoliosis surgery. J Bone Joint Surg. 1974;56-A:1167–72.

    Article  Google Scholar 

  43. Araújo LMT, Garcia LV. Acute normovolemic hemodilution: a practical approach. OJAnes. 2013;3:38–43.

    Article  Google Scholar 

  44. Copley LAB, Richards BS, Safavi FZ, Newton PO. Hemodilution as a method to reduce transfusion requirements in adolescent spine fusion surgery. Spine. 1999;24:219–22.

    Article  CAS  PubMed  Google Scholar 

  45. Hur S, Huizenga BA, Mjor M. Acute normovolemic hemodilution combined with hypotensive anesthesia and other techniques to avoid homologous transfusion in spinal fusion surgery. Spine. 1992;17:867–73.

    Article  CAS  PubMed  Google Scholar 

  46. Degoute CS. Controlled hypotension: a guide to drug choice. Drugs. 2007;67:1053–76.

    Article  CAS  PubMed  Google Scholar 

  47. Nigel MS, McMaster M. The use of induced hypotension to control bleeding during posterior spinal fusion for scoliosis. J Bone Joint Surg. 1983;65-A:255–8.

    Google Scholar 

  48. Patel NJ, Patel BS, Paskin S, Laufer S. Induced moderate hypotensive anesthesia for spinal fusion and Harrington-rod instrumentation. J Bone Joint Surg. 1985;67-A:1384–7.

    Article  Google Scholar 

  49. Llndop MJ. Complications and morbidity of controlled hypotension. Br J Anaesth. 1975;47:799–803.

    Article  Google Scholar 

  50. Lesniak AB, Tremblay P, Dalens BJ, Aucoin M, Mercier P. Intrathecal morphine reduces blood loss during idiopathic scoliosis surgery: retrospective study of 256 pediatric cases. Paediatr Anaesth. 2013;23:265–70.

    Article  PubMed  Google Scholar 

  51. Eschertzhuber S, Hohlrieder M, Keller C, Oswald E, Kuehbacher G, Innerhofer P. Comparison of high and low-dose intrathecal morphine for spinal fusion in children. Br J Anaesth. 2008;100:538–43.

    Article  CAS  PubMed  Google Scholar 

  52. Gall O, Aubineau JV, Bernière J, Desjeux L, Murat I. Analgesic effect of low-dose intrathecal morphine after spinal fusion in children. Anesthesiology. 2001;94:447–52.

    Article  CAS  PubMed  Google Scholar 

  53. Behrman MJ, Keim HA. Perioperative red blood cell salvage in spine surgery. Clin Orthop Relat Res. 1992;278:51–7.

    Google Scholar 

  54. Flynn JC, Metzger CR, Csencsitz TA. Intraoperative autotransfusion (IAT) in spinal surgery. Spine. 1982;7:432–5.

    Article  CAS  PubMed  Google Scholar 

  55. Florintino-Pineda I, Blakemore LC, Thompson GH, Poe-Kochert C, Adler P, Tripi P. The effect of EACA on perioperative blood loss in patients with idiopathic scoliosis undergoing posterior spinal fusion: a preliminary prospective study. Spine. 2001;26:1147–51.

    Article  Google Scholar 

  56. Verma K, Errico T, Diefenbach C, Hoelscher C, Peters A, Dryer J, Huncke T, Boenigk K, Lonner BS. The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg. 2014;96:e80.

    Article  PubMed  Google Scholar 

  57. Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM. A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg. 2001;93:82–7.

    Article  CAS  PubMed  Google Scholar 

  58. Fergusson DA, Hebert PC, Mazer CD, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358:2310–31.

    Article  Google Scholar 

  59. Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2011;1:CD001886.

    Google Scholar 

  60. Schwinn DA, Mackensen GB, Brown EN. Understanding the TXA seizure connection. J Clin Invest. 2012;122:4339–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy collaborative group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  62. Han YY, Carcillo JA, Dragotta MA, Bills DM, Watson RS, Westerman ME, Orr RA. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112:793–9.

    Article  PubMed  Google Scholar 

  63. Rosenberg AL, Dechert RE, Park PK, Bartlett RH, NIH NHLBI ARDS Network. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med. 2009;24:35–46.

    Article  PubMed  Google Scholar 

  64. Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, Micek ST, Kollef MH. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136:102–9.

    Article  PubMed  Google Scholar 

  65. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    Article  PubMed  Google Scholar 

  66. Gan H, Cannesson M, Chandler JR, Ansermino JM. Predicting fluid responsiveness in children. Anesth Analg. 2013;17:1380–92.

    Article  Google Scholar 

  67. Raux O, Spencer A, Fesseau R, Mercier G, Rochette A, Bringuier S, Lakhal K, Capdevila X, Dadure C. Intraoperative use of transoesophageal Doppler to predict response to volume expansion in infants and neonates. Br J Anaesth. 2012;108:100–7.

    Article  CAS  PubMed  Google Scholar 

  68. Tibby SM, Hatherill M, Durward A, Murdoch IA. Are transoesophageal Doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med. 2001;27:201–5.

    Article  CAS  PubMed  Google Scholar 

  69. Chandler JR, Cooke E, Hosking M, Froese N, Karlen W, Ansermino JM. Volume responsiveness in children, a comparison of static and dynamic variables. Proceedings of the IARS 2011 Annual Meeting; 2011. p. S–200.

    Google Scholar 

  70. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28.

    Article  PubMed  Google Scholar 

  71. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.

    Article  CAS  PubMed  Google Scholar 

  72. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  73. Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38:1429–37.

    Article  PubMed  Google Scholar 

  74. Florence J, Hilly J, Sallah TB, Skhiri A, Michelet D, Brasher C, Varin L, Nivoche Y, Dahmani S. Plethysmographic variability index (PVI) accuracy in predicting fluid responsiveness in anesthetized children. Pediatr Anesth. 2013;23:536–46.

    Article  Google Scholar 

  75. Vergnaud EC, Verchere VJ, Miatello J, Meyer P, Carli P, Orliaguet G. Stroke volume variation and indexed stroke volume measured using bioreactance predict fluid responsiveness in postoperative children. Br J Anaesth. 2014;114:103–9.

    Article  PubMed  Google Scholar 

  76. Pereira de Souza Neto E, Grousson S, Duflo F, Ducreux C, Joly H, Convert J, Mottolese C, Dailler F, Cannesson M. Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br J Anaesth. 2011;106:856–64.

    Article  CAS  PubMed  Google Scholar 

  77. Renner J, Broch O, Gruenewald M, Scheewe J, Francksen H, Jung O, Steinfath M, Bein B. Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia. 2011;66:582–9.

    Article  CAS  PubMed  Google Scholar 

  78. Byon HH, Lim CW, Lee JH, Park YH, Kim HS, Kim CS, Kim JT. Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery. Surv Anesthesiol. 2013;57:306–7.

    Article  Google Scholar 

  79. Durand P, Chevret L, Essouri S, Haas V, Devictor D. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med. 2008;34:888–94.

    Article  PubMed  Google Scholar 

  80. Tibby, et al. Use of transoesophageal Doppler ultrasonography in ventilated pediatric patients: derivation of cardiac output. Crit Care Med. 2000;28:2045–450.

    Article  CAS  PubMed  Google Scholar 

  81. Murdoch IA, Marsh MJ, Tibby SM, McLuckie A. Continuous haemodynamic monitoring in children: use of transoesophageal Doppler. Acta Paediatr. 1995;84:761–4.

    Article  CAS  PubMed  Google Scholar 

  82. Deltex Medical Launches E-learning Center. Deltex Medical Education. Web. 29 Jan 2016.

    Google Scholar 

  83. Manecke G. UCSD goal directed fluid therapy algorithms. Clinical Guidelines – Department of Anesthesiology. UC San Diego Health Sciences, Oct 2015. Web. 5 July 2016.

    Google Scholar 

  84. Hazinski MF. Manual of pediatric critical care. St. Louis: Mosby; 1999.

    Google Scholar 

  85. Finsterer J, Cripe L. Treatment of dystrophin cardiomyopathies. Nat Rev Cardiol. 2014;11:168–79.

    Article  CAS  PubMed  Google Scholar 

  86. Musson RE, Warren DJ, Bickle I, Connolly DJ, Griffiths PD. Imaging in childhood scoliosis: a pictorial review. Postgrad Med J. 2010;86:419–27.

    Article  PubMed  Google Scholar 

  87. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials. Anesthesiology. 2003;99:716–37.

    Article  PubMed  Google Scholar 

  88. Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology. 2000;93:32–8.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  1. Pathology Index. Pathology index. Washington University, St. Louis, MO. Web. 12 Jan 2016.

    Google Scholar 

  2. Bithal P, Ali Z. Intra-operative neurophysiological monitoring. J Neuroanaesthesiol Crit Care. 2015;2:179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim T. Rafaat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seshadri, S.M., Rafaat, K.T., Brzenski, A. (2019). Anesthetic Implications of Duchenne Muscular Dystrophy and the Surgical Repair of Scoliosis. In: Benumof, J., Manecke, G. (eds) Clinical Anesthesiology II. Springer, Cham. https://doi.org/10.1007/978-3-030-12365-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12365-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12363-5

  • Online ISBN: 978-3-030-12365-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics