Skip to main content

Support of the Self-purification Processes in Lakes Restored in Poland

  • Chapter
  • First Online:
Book cover Polish River Basins and Lakes – Part II

Abstract

This study analyses the dynamics of organic matter and algae pigments in water of urban lakes subjected to various restoration techniques. Most of the lakes were restored with the inactivation method using coagulant PAX 18. One of them was supported with biomanipulation. Assessments of the organic carbon form content (POC, in suspension; DOC, dissolved form) and the chlorophyll and pheophytin concentrations were conducted. The ratios of individual parameters were then evaluated, and the relationships between these indicators were tested. It was found that decreasing primary production and the associated organic matter in a suspended form can improve self-purification processes in restored lakes. The decreasing POC after restoration leads to a reduction in the amount of DOC in the lake and determines the balance of production and decomposition. This improvement may initially be able to reduce the DOC content, mainly due to easily biodegradable compounds. The lower primary production supplies a lower content of hardly biodegradable compounds (when algae decay). After that, the amount of high-molecular-weight DOC can be reduced. The improved self-purification of the lakes was also reflected in a reduced chlorophyll/pheophytin ratio. There was no effective reduction of the organic matter content after the first restoration in polymictic lakes with high loaded biogens and organic matter (DOC) from the catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chróst RJ, Siuda W (2006) Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnol Oceanogr 51:749–762

    Google Scholar 

  2. Sitarek M, Napiórkowska-Krzebietke A, Mazur R et al (2017) Application of effective microorganisms technology as a lake restoration tool - a case study of Muchawka Reservoir. J Elem 22(2):529–543. https://doi.org/10.5601/jelem.2016.21.2.1196

    Article  Google Scholar 

  3. Górniak A (2016) Export of nutrients from the catchment of the upper Szeszupa River (drainage basin of the Neman River) and its seasonality. Limnol Rev 16(4):213–219. https://doi.org/10.1515/limre-2016-0023

    Article  CAS  Google Scholar 

  4. Łopata M, Czerniejewski P, Wiśniewski G et al (2017) The use of expanded clay aggregate for the pretreatment of surface waters on the example of a tributary of Lake Klasztorne Górne in Strzelce Krajeńskie. Limnol Rev 17(1):3–9. https://doi.org/10.1515/limre-2017-0001

    Article  CAS  Google Scholar 

  5. Minor E, Stephens B (2008) Dissolved organic matter characteristics within the Lake Superior watershed. Org Geochem 39:1489–1501

    CAS  Google Scholar 

  6. Parszuto K, Tandyrak R, Galik J (2009) Qualitative and quantitative characteristics of organic matter in the of a small reservoir. Arch Environ Prot 35(3):59–71

    CAS  Google Scholar 

  7. Siuda W, Chróst RJ (2002) Decomposition and utilization of particulate organic matter by bacteria in lakes of different trophic status. Pol J Environ Stud 11(1):53–65

    CAS  Google Scholar 

  8. Meriluoto J, Blaha L, Bojadzija G et al (2017) Toxic cyanobacteria and cyanotoxins in European waters - recent progress achieved through the CYANOCOST action and challenges for further research. Adv Oceanogr Limnol 8(1):161–178. https://doi.org/10.4081/aiol.2017.6429

    Article  CAS  Google Scholar 

  9. Brzozowska R, Dunalska J, Filipkowska Z (2013) Seasonal changes of total carbon, nitrogen and phosphorus concentration in the near-bottom and interstitial water of three deep, stratified urban lakes. GJPAAS 1:736–740

    Google Scholar 

  10. Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121

    CAS  Google Scholar 

  11. Ramanan R, Byung-Hyuk K, Dae-Hyun C et al (2016) Algae–bacteria interactions: evolution, ecology and emerging application. Biotechnol Adv 34:14–29

    CAS  Google Scholar 

  12. Mladenov N, Sommaruga R, Morales-Baquero R et al (2011) Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun 2:405. https://doi.org/10.1038/ncomms1411

    Article  CAS  Google Scholar 

  13. Bonnett SA, Ostle N, Freeman C (2006) Seasonal variations in decomposition processes in a valley bottom riparian peatland. Sci Total Environ 370(2–3):561–573

    CAS  Google Scholar 

  14. Brzozowska R, Gawrońska H (2009) The influence of a long term artificial aeration on the nitrogen compounds exchange between bottom sediments and water in Lake Długie. Oceanol Hydrobiol Stud 38(1):1–7

    Google Scholar 

  15. Huser B, Berezonik P, Newman R (2011) Effects of alum treatment on water quality and sediment in the Minneapolis Chain of Lakes, Minnesota, USA. Lake Reserv Manage 27(3):220–228. https://doi.org/10.1080/07438141.2011.601400

    Article  CAS  Google Scholar 

  16. Dunalska JA, Wiśniewski G, Mientki C (2007) Assessment of multi-year (1956–2003) hypolimnetic withdrawal from Lake Kortowskie, Poland. Lake Reserv Manage 23:377–387

    Google Scholar 

  17. Dunalska JA, Górniak D, Jaworska B et al (2012) Effect of temperature on organic matter transformation in a different ambient nutrient availability. Ecol Eng 49:27–34

    Google Scholar 

  18. Grochowska J, Gawrońska H (2004) Restoration effectiveness of a degraded lake using multi-year artificial aeration. Pol J Environ Stud 13(6):671–681

    CAS  Google Scholar 

  19. Grochowska J, Brzozowska R, Łopata M (2013) Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods. Water Sci Technol 68(1):234–239

    Google Scholar 

  20. Grochowska J, Brzozowska R, Parszuto K (2014) The influence of different recultivation techniques on primary production processes in a degraded urban lake. Oceanol Hydrobiol Stud 43(3):211–218

    CAS  Google Scholar 

  21. Łopata M, Gawrońska H, Jaworska B et al (2013) Restoration of two shallow, urban lakes using the phosphorus inactivation method – preliminary results. Water Sci Technol 68(10):2127–2135

    Google Scholar 

  22. Parszuto K, Grochowska J (2005) Influence of artificial aeration with destratification on the selected indices of organic matter content variability in Lake Długie water. Inżynieria Ekologiczna 12:219–220

    Google Scholar 

  23. Welch EB, Cooke GD (1999) Effectiveness and longevity of phosphorus inactivation with alum. Lake Reserv Manage 15(1):5–27. https://doi.org/10.1080/07438149909353948

    Article  CAS  Google Scholar 

  24. Parszuto K, Głażewski R, Łopata M et al (2017) The use of the optical properties of dissolved organic matter to evaluation of the lakes restoration effects (in polish). In: Wiśniewski R (ed) Ochrona i rekultywacja jezior. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, pp 99–116

    Google Scholar 

  25. Parszuto K (2003) Dynamics of organic carbon in lake waters subjected to various methods of restoration (in polish). Dissertation, UWM Olsztyn

    Google Scholar 

  26. Parszuto K, Głażewski R (2004) The relationship between the contents of particulate (POC) and dissolved (DOC) organic carbon in the waters of Lake Długie and Lake Kortowskie recultivated with different methods. Limnol Rev 4:193–200

    Google Scholar 

  27. Łopata M, Wiśniewski G (2010) Studies of environmental conditions of Lake Wolsztyn in terms of its protection and reclamation (in polish). Typescript, UWM Olsztyn

    Google Scholar 

  28. Jańczak J (ed) (1996) Atlas of Polish lakes (in polish). Instytut Meteorologii i Gospodarki Wodnej, Bogucki Wydawnictwo Naukowe, Poznań

    Google Scholar 

  29. Czerniejewski P, Czerniawski R (2008) Final report on hydrochemical and hydrobiological studies carried out on the lake Klasztorne Górne with the assessment of restoration opportunities. http://www.archiwum.strzelce.pl/usr_files/8dfb354dab1e6e738750c90f00cf5a5d_3/raport_koncowy.pdf. Accessed 12 Dec 2014

  30. Łopata M, Wiśniewski G, Czerniawski R et al (2013) Possibilities of restoration Lake Klasztorne Górne in Strzelce Krajeńskie. In: Wiśniewski R (ed) Ochrona i rekultywacja jezior. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, pp 135–143

    Google Scholar 

  31. https://www.google.com/maps/@52.9821495,17.9160747,246595m/data=!3m1!1e3. Accessed 23 Aug 2018

  32. IRS Olsztyn (1958) Mapa batymetryczna i opracowanie danych morfometrycznych Jeziora Długiego (Bathymetric map and elaborating of morphometric data of Długie Lake)

    Google Scholar 

  33. WIOŚ Poznań (2004) Raport o stanie środowiska w Wielkopolsce w roku 2003 (Report on the state of the environment in Wielkopolska in 2003). Biblioteka Monitoringu Środowiska, Poznań

    Google Scholar 

  34. Standard methods for the examination of water and wastewater (1985) American Public Health Association, Washington, DC

    Google Scholar 

  35. Parszuto K (2008) POC, chlorophyll and pheophytin a vertical distribution in restored Kortowskie Lake (Poland). Limnol Pap 3:79–88

    Google Scholar 

  36. Søndergaard M, Jeppesen E (2007) Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J Appl Ecol 44:1089–1094

    Google Scholar 

  37. Jarosiewicz A (2007) The self-purification process in river ecosystems (in polish). Słupskie Prace Biologiczne 4:27–41

    Google Scholar 

  38. Ostroumov SA (2000) The concept of aquatic biota as a labile and vulnerable component of the water self-purification system. Dokl Biol Sci 372:286–289. Translated from Dokl Akad Nauk 372(2):279–282

    CAS  Google Scholar 

  39. Ostroumov SA (2010) Biocontrol of water quality: multifunctional role of biota in water self-purification. Russ J Gen Chem 80(13):2754–2761

    CAS  Google Scholar 

  40. Jaworska B, Gawrońska H, Łopata M (2009) Changes in the phytoplankton community of a lake restored with phosphorus inactivation (Lake Głęboczek, northern Poland). Oceanol Hydrobiol Stud 38(1):93–101

    Google Scholar 

  41. Kangabam RD, Boominathan SD, Govindaraju M (2015) Ecology, disturbance and restoration of Loktak Lake in Indo-Burma Biodiversity Hotspot-an overview. NeBIO 6(2):9–15

    Google Scholar 

  42. Żelazo J (2006) Renaturalization of rivers and valleys (in polish). Infrastruktura i ekologia terenów wiejskich 4:1):11–1):31

    Google Scholar 

  43. Dąbrowska J (2008) Methods of reclamation of water reservoirs. Acta Sci Pol Formatio Circumiectus 7(1):63–79

    Google Scholar 

  44. Osuch E, Podsiadłowski S (2012) Efficiency of pulverizing aeration on Lake Panieńskie. Limnol Rev 12(3):139–145

    Google Scholar 

  45. Anderson MA, Berkowitz J (2010) Aluminum polymers formed following alum treatment of lake water. Chemosphere 81(7):832–836

    CAS  Google Scholar 

  46. Łopata M, Gawrońska H (2008) Phosphorus immobilization in Lake Głęboczek following treatment with polyaluminium chloride. Oceanol Hydrobiol Stud 37(2):99–105

    Google Scholar 

  47. Anttila S, Ketola M, Kuoppamäki K et al (2013) Identification of a biomanipulation - driven regime Shift in Lake Vesijärvi: implications for lake management. Freshw Biol 58:1494–1502. https://doi.org/10.1111/fwb.12150

    Article  CAS  Google Scholar 

  48. Chęciński G, Czernaś K, Szczurowska A et al (2014) Changes in the dominance structure of phytoplankton in a pond exposed to biological reclamation treatments. In: Abstracts of the 33th International Conference of the Polish Phycological Society. Gdynia-Cetniewo, 19–22 May. pp 62–63

    Google Scholar 

  49. Górniak A, Zieliński P, Grabowska M et al (2006) Results of biomanipulation of humic reservoir after four years of study. Verh Int Ver Limnol 29:2059–2062

    Google Scholar 

  50. Jeppesen E, Søndergaard M, Lauridsen TL et al (2012) Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Adv Ecol Res 47:411–488

    Google Scholar 

  51. Grochowska JK, Brzozowska R, Parszuto K et al (2017) Modifications in the trophic state of urban lake, restored by different methods. J Elem 22(1):43–53. https://doi.org/10.5601/jelem.2016.21.2.1058

    Article  Google Scholar 

  52. Gumińska J (2011) The influence of transformation of aluminum forms on water treatment using polymerized coagulants (in polish). Ochrona Środowiska 33(2):17–21

    Google Scholar 

  53. Sperczyńska E, Dąbrowska L, Wiśniowska E (2014) Removal of turbidity, colour and organic matter from surface water by coagulation with polyaluminium chlorides and with activated carbon as coagulant aid. Desalin Water Treat 2014:1–6. https://doi.org/10.1080/19443994.2014.989634

    Article  CAS  Google Scholar 

  54. Wilmański K, Trzebiatowski M (2009) Removal of organic substances from surface water in processes of coagulation and sorption on powdered active carbon (in polish). Ochrona Środowiska 31(4):39–42

    Google Scholar 

  55. Barreto SRG, Nozaki J, Barreto WJ (2003) Origin of dissolved organic carbon studied by UV-VIS spectroscopy. Acta Hydrochim Hydrobiol 31(6):513–518. https://doi.org/10.1002/aheh.200300510

    Article  CAS  Google Scholar 

  56. Głażewski R, Wójcik I (2009) Preliminary examinations of the functional properties of dissolved organic matter in selected lakes of the district of Ełk. Limnol Rev 7(2):35–40

    Google Scholar 

  57. Wood CHM, Al-Reasia HA, Smith DS (2011) The two faces of DOC. Aquat Toxicol 105(3–4):3–8

    CAS  Google Scholar 

  58. Bogatov VV, Bogatova LV (2009) Heavy metal accumulation by freshwater hydrobionts in a mining area in the south of the Russian Far East. Russ J Ecol 40(3):187–193

    CAS  Google Scholar 

  59. Seekell DA, Lapierre JF, Karlsson J (2015) Trade-offs between light and nutrient availability across gradients of dissolved organic carbon concentration in Swedish lakes: implications for patterns in primary production. Can J Fish Aquat Sci 72(11):1663–1671

    CAS  Google Scholar 

  60. Głażewski R, Parszuto K (2002) Optical properties of dissolved organic matter (DOM) in the recultivated lakes of Olsztyn. Limnol Rev 2:137–142

    Google Scholar 

  61. Albright MF, Harman WH, Tibbits WT et al (2004) Biomanipulation: a classic example in a shallow eutrophic pond. Lake Reserv Manage 20(3):181–187. https://doi.org/10.1080/07438140409354242

    Article  CAS  Google Scholar 

  62. Gołdyn R (2007) Biomanipulation in water reservoirs as a method of restoration (in polish). In: Wiśniewski R, Piotrowiak J (eds) Ochrona i rekultywacja jezior. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, pp 65–75

    Google Scholar 

  63. Prejs A, Pijanowska J, Koperski P et al (1997) Food web manipulation in a small, eutrophic Lake Wirbel, Poland: long-term changes in fish biomass and basic measures of water quality. A case study. Hydrobiologia 342/343:383–386

    Google Scholar 

  64. Perrow MR, Meijer ML, Dawidowicz P et al (1997) Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343:355–365

    Google Scholar 

  65. Peretyatko A, Teissier S, De Backer S et al (2012) Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environ Monit Assess 184:1517–1531. https://doi.org/10.1007/s10661-011-2057-z

    Article  CAS  Google Scholar 

  66. Maloney KO, Morris DP, Moses CO et al (2005) The role of iron and dissolved organic carbon in the absorption of ultraviolet radiation in humic lake water. Biogeochemistry 75:393–407

    CAS  Google Scholar 

  67. Gudasz C, Bastviken D, Steger K et al (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481. https://doi.org/10.1038/nature09186

    Article  CAS  Google Scholar 

  68. Korshin G, Chow CW, Fabris R et al (2009) Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights. Water Res 43(6):1541–1548. https://doi.org/10.1016/j.watres.2008.12.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge our graduate students who helped in the laboratory and field investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Parszuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parszuto, K., Łopata, M., Grochowska, J., Tandyrak, R., Augustyniak, R. (2020). Support of the Self-purification Processes in Lakes Restored in Poland. In: Korzeniewska, E., Harnisz, M. (eds) Polish River Basins and Lakes – Part II. The Handbook of Environmental Chemistry, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-030-12139-6_16

Download citation

Publish with us

Policies and ethics