Skip to main content

Tensor Decomposition for Imagined Speech Discrimination in EEG

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence (MICAI 2018)

Abstract

Most of the researches in Electroencephalogram(EEG)-based Brain-Computer Interfaces (BCI) are focused on the use of motor imagery. As an attempt to improve the control of these interfaces, the use of language instead of movement has been recently explored, in the form of imagined speech. This work aims for the discrimination of imagined words in electroencephalogram signals. For this purpose, the analysis of multiple variables of the signal and their relation is considered by means of a multivariate data analysis, i.e., Parallel Factor Analysis (PARAFAC). In previous works, this method has demonstrated to be useful for EEG analysis. Nevertheless, to the best of our knowledge, this is the first attempt to analyze imagined speech signals using this approach. In addition, a novel use of the extracted PARAFAC components is proposed in order to improve the discrimination of the imagined words. The obtained results, besides of higher accuracy rates in comparison with related works, showed lower standard deviation among subjects suggesting the effectiveness and robustness of the proposed method. These results encourage the use of multivariate analysis for BCI applications in combination with imagined speech signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barzegaran, E., Vildavski, V.Y., Knyazeva, M.G.: Fine structure of posterior alpha rhythm in human EEG: frequency components, their cortical sources, and temporal behavior. Sci. Rep. 7(1), 8249 (2017)

    Article  Google Scholar 

  2. Bro, R.: PARAFAC: tutorial and applications. Chemometr. Intell. Lab. Syst. 38(2), 149–171 (1997)

    Article  Google Scholar 

  3. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “eckart-young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  Google Scholar 

  4. Cichocki, A.: Tensor decompositions: a new concept in brain data analysis? J. SICE Control Measur. Syst. Integr. Special Issue; Measur. Brain Funct. Bio-Signals 7, 507–517 (2011). 7 (05 2013)

    Google Scholar 

  5. Cichocki, A., et al.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis (2015). https://doi.org/10.1109/MSP.2013.2297439

    Article  Google Scholar 

  6. Cong, F., Phan, A.H., Lyytinen, H., Ristaniemi, T., Cichocki, A.: Classifying healthy children and children with attention deficit through features derived from sparse and nonnegative tensor factorization using event-related potential. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 620–628. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15995-4_77

    Chapter  Google Scholar 

  7. Dalhoumi, S., Dray, G., Montmain, J.: Knowledge transfer for reducing calibration time in brain-computer interfacing. In: Proceedings - International Conference on Tools with Articial Intelligence, ICTAI (2014)

    Google Scholar 

  8. Devarajan, K.: Matrix and Tensor Decompositions, pp. 291–318. Springer, Boston (2011)

    Google Scholar 

  9. García-Salinas, J.S., Villaseñor-Pineda, L., Reyes-García, C., Torres-García, A.A.: Selección de parámetros en el enfoque de bolsa de características para clasificación de habla imaginada en electroencefalogramas. Res. Comput. Sci. 140(140), 123–133 (2017)

    Google Scholar 

  10. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. In: UCLA Working Papers Phonetics, vol. 16, no. 10, pp. 1–84 (1970)

    Google Scholar 

  11. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1–4), 164–189 (1927). https://doi.org/10.1002/sapm192761164

    Article  MATH  Google Scholar 

  12. Ji, H., Li, J., Lu, R., Gu, R., Cao, L., Gong, X.: EEG classification for hybrid brain-computer interface using a tensor based multiclass multimodal analysis scheme. Comput. Intell. neurosci. 2016, 51 (2016)

    Article  Google Scholar 

  13. Lee, H., Kim, Y.D., Cichocki, A., ChoI, S.: Nonnegative tensor factorization for continuous EEG classification. Int. J. Neural Syst. 17(04), 305–317 (2007). https://doi.org/10.1142/S0129065707001159

    Article  Google Scholar 

  14. Li, J., Zhang, L.: Phase interval value analysis for the motor imagery task in BCI. J. Circ. Syst. Comput. 18(08), 1441–1452 (2009). https://doi.org/10.1142/S0218126609005861

    Article  Google Scholar 

  15. Li, J., Zhang, L.: Regularized tensor discriminant analysis for single trial EEG classification in BCI. Pattern Recogn. Lett. 31(7), 619–628 (2010). https://doi.org/10.1016/j.patrec.2009.11.012

    Article  Google Scholar 

  16. Li, J., Zhang, L., Tao, D., Sun, H., Zhao, Q.: A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 17(2), 107–115 (2009). https://doi.org/10.1109/TNSRE.2008.2008394

    Article  Google Scholar 

  17. Lilly, J.M., Olhede, S.C.: Higher-order properties of analytic wavelets. Trans. Sig. Proc. 57(1), 146–160 (2009). https://doi.org/10.1109/TSP.2008.2007607

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, H., Plataniotis, K., Venetsanopoulos, A.: Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data. Machine Learning & Pattern Recognition Series. Chapman & Hall/CRC Press, London/Boca Raton (2013)

    Book  Google Scholar 

  19. Miwakeichi, F., Martínez-Montes, E., Valdés-Sosa, P.A., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage 22(3), 1035–1045 (2004). https://doi.org/10.1016/j.neuroimage.2004.03.039

    Article  Google Scholar 

  20. Pressel Coretto, G.A., Gareis, I.E., Rufiner, H.L.: Open access database of EEG signals recorded during imagined speech. In: Proceedings SPIE, vol. 10160 (2017). https://doi.org/10.1117/12.2255697

  21. Sifuzzaman, M., Islam, M.R., Ali, M.Z.: Application of wavelet transform and its advantages compared to Fourier transform. J. Phys. Sci. 13, 121–134 (2009)

    Google Scholar 

  22. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007). https://doi.org/10.1109/TPAMI.2007.1096

    Article  Google Scholar 

  23. Torres-García, A.A., Reyes-García, C.A., L., L.V.P., Ramirez, J.: Analisis de señales electroencefalograficas para la clasificacion de habla imaginada. Revista mexicana de ingeniería biomedica 34, 23–39 (2013)

    Google Scholar 

  24. Torres-García, A.A., Reyes-García, C.A., Villaseñor-Pineda, L., García-Aguilar, G.: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification. Expert Syst. Appl. 59, 1–12 (2016). https://doi.org/10.1016/j.eswa.2016.04.011

    Article  Google Scholar 

  25. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol.: Official J. Int. Fed. Clin. Neurophysiol. 113(6), 767–91 (2002)

    Article  Google Scholar 

  26. Zhao, Q., Caiafa, C.F., Cichocki, A., Zhang, L., Phan, A.H.: Slice oriented tensor decomposition of EEG data for feature extraction in space, frequency and time domains. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5863, pp. 221–228. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10677-4_25

    Chapter  Google Scholar 

  27. Zhu, X., Kim, J.: Application of analytic wavelet transform to analysis of highly impulsive noises. J. Sound Vibr. 294, 841–855 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The present work was partially supported by CONACyT (scholarship 487560). Also, the authors thank the support of the Italian Foreign Affairs and Cooperation Ministry, and the International Cooperation for Development Mexican Agency for the project MX14MO06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús S. García-Salinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Salinas, J.S., Villaseñor-Pineda, L., Reyes-García, C.A., Torres-García, A. (2018). Tensor Decomposition for Imagined Speech Discrimination in EEG. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Computational Intelligence. MICAI 2018. Lecture Notes in Computer Science(), vol 11289. Springer, Cham. https://doi.org/10.1007/978-3-030-04497-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04497-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04496-1

  • Online ISBN: 978-3-030-04497-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics