Skip to main content

Solar Thermal Power Station for Green Building Energy Supply

  • Chapter
  • First Online:

Part of the book series: Computational Intelligence Methods and Applications ((CIMA))

Abstract

Onsite generation of renewable energy can significantly reduce the environmental impact of a building [1]. Small solar power plants with thermal energy storage can support all the energy demands of residential houses in countries with a hot, arid climate. In countries with a cold climate, such as Canada and Russia, solar energy can still provide a significant part (sometimes more than half) of the energy consumed by a residential house. This book’s researchers developed prototypes for flat facet solar concentrators that approximate a parabolic-shaped surface and described them in the earlier chapters. They also proposed and patented a low-cost method for parabolic surface adjustment. Rough estimations show that concentrators of this type can be very inexpensive (US$20–30 m−2). On the basis of these concentrators and small-scale thermal energy storage, it is possible to make power plants for green buildings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baidyk, T., Kussul, E., Saniger, J., Bruce, N., Apipilhuasco Ganzalez, C.M., Mojica Hernandez, R.J., Gallardo Perez, L., Mejia Rodriguez, N.P.: Solar thermal power station for green building energy supply. In: International Conference & Exhibition on Clean Energy, ICCE 2013, September 9–11, 2013, Ottawa, pp. 389–397 (2013)

    Google Scholar 

  2. Kussul, E., Makeyev, O., Baidyk, T., et al.: The problem of automation of solar concentrator assembly and adjustment. Int. J. Adv. Robot. Syst. 8(4), 150–157 (2011)

    Article  Google Scholar 

  3. Kussul, E., et al.: Method and device for mirrors position adjustment of a solar concentrator, notice of allowance, 02.03.2010 (Mexico), 02.03.2011 (USA). USA Patent N US 8, 631, 995 B2, Jan 21, 2014

    Google Scholar 

  4. Johnston, G.: Focal region measurements of the 20 m2 tiled dish at dic Australian National University. Solar Energy. 63(2), 117–124 (1998)

    Article  Google Scholar 

  5. The Australian and New Zealand Solar Energy Society, White Cliffs Dish—20 m2 dish at ANU. http://www.anzses.orglGallery/Dish.html

  6. Wood, D.: Support structure for a large dimension parabolic reflector and large dimension parabolic reflector. Patent EP 0022887 A1. 21.12.1983 (24.07.1979) (1983)

    Google Scholar 

  7. Wood, D.: Matrix solar dish. US Patent N°6485152 (2002)

    Google Scholar 

  8. Estufa solar para poblaciones urbanas, Centro de Investigación y Estudios Avanzados (Cinvestav), Mexico. http://pepegrillo.com/2009/02/estufa-solar-para-poblaciones-urbanas/

  9. Kussul, E., Baidyk, T., Makeyev, O., et al.: Development of micro mirror solar concentrator. In: The 2nd IASME/WSEAS International Conference on Energy and Environment (EE’07), Portoroz (Portotose), Slovenia, May 15–17, 2007, pp. 294–299 (2007)

    Google Scholar 

  10. Kussul, E., Baidyk, T., et al.: Support frame for micro facet solar concentrator. In: The 2nd IASME/WSEAS International Conference on Energy and Environment (EE’07), Portoroz (Portorose), Slovenia, May 15–17, pp. 300–304 (2007)

    Google Scholar 

  11. Hamed, A.M.: Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems. Renew. Energy. 28(13), 2099–2111 (2003)

    Article  Google Scholar 

  12. Solar Energy Dehumidification Experiment on the Citicorp Center Building: Final Report Prepared for NSF, Energy Laboratory, Massachusetts Institute of Technology, Report No. MIT-EL 77-005, p. 176

    Google Scholar 

  13. Kussul, E., Baydyk, T., Bruce, N., Apipilhuasco González, C.M., Mojica Hernández, R.J., Gallardo, P.L., Mejía Rodríguez, N. P.: Solar air dehumidification systems. In: International Conference on Renewable Energies and Power Quality (ICREPQ’14), Cordoba, Spain, 8–10 April, 2014, pp. 1–4 (2014)

    Google Scholar 

  14. Cortés Rodríguez, E., Castilla Carrillo, J., Ruiz Mercado, C., Rivera Gómez-Franco, W.: Absorption Solar Refrigeration System for Air Conditioning in the Yucatan Peninsula. In: Proceedings of EuroPES 2012, June 25–27, 2012, Napoli, p. 7 (2012)

    Google Scholar 

  15. Li, Z.F., Sumathy, K.: Technology development in the solar absorption air-conditioning systems. Renew. Sustain. Energy Rev. 4, 267–293 (2000)

    Article  Google Scholar 

  16. Labus, J.: Modelling of Small Capacity Absorption Chillers Driven by Solar Thermal Energy or Waste Heat. PhD Thesis, Tarragona, p. 261 (2011)

    Google Scholar 

  17. Gianuzzi, M.G., Meliozzi, A., Prischich, E.D., Rubbia, C., Vignoli, M.: Parabolic Solar Concentrator, patent, 2002, WO 2002103256. http://www.csp-world.com/csppatents/parabolic-solar-concentrator (2002)

  18. Kussul, E., Baidyk, T., Lara, F., Saniger, J., Bruce, N., Estrada, C.: Micro facet solar concentrator. Int. J. Sustain. Energy. 27(2), 61–71 (2008)

    Article  Google Scholar 

  19. Kussul, E., Baidyk, T., Makeyev, O., et al.: Flat facet parabolic solar concentrator with support cell for one and more mirrors. WSEAS Trans. Power Syst. 3(8), 577–586 (2008)

    Google Scholar 

  20. Baydyk, T., Kussul, E., Bruce, N.: Solar chillers for air conditioning systems. In: International Conference on Renewable Energies and Power Quality (ICREPQ’14), Cordoba, 8–10 April, 2014, pp. 1–5 (2014)

    Google Scholar 

  21. Kussul, E., Baidyk, T., Saniger, J., Bruce, N.: Large scale thermal energy storage. In: Proceedings of ICCE 2013, September 9–11, 2013, Ottawa, pp. 446–450 (2013)

    Google Scholar 

  22. Mitra, R., Saydam, S.: Surface coal mining methods in Australia. In: Onargan, T. (ed) Mining Methods, pp. 3–22. InTech. http://www.intechopen.com/download/pdf/30795 (2012)

    Google Scholar 

  23. http://www.minesurveyor.net/mbopencut.php, last visit 14.09.2016

  24. http://www.minecost.com/ohara.htm, last visit 14.09.2016

  25. http://www.miningcongress.com/pdf/presentations-downloads/DAT-David-Tutton-1.pdf, last visit 14.09.2016

  26. Zaitsev, G.D., et al.: Blast-free technology of mineral mining: state and prospects. Part III: Equipment for open mining. J. Min. Sci. 40(3), 273–282 (2004)

    Article  Google Scholar 

  27. Sandru, M.: Sun Catcher’s Stirling-Engine Based Solar Concentrators to Start in 2010. http://www.greenoptimistic.com/2009/07/10/suncatcher-solar-concentrator/#.VA4tAiB0w_4 (2009). Visited 10.09.2014

  28. Riveros-Rosas, D., et al.: Optical design of a high radiative flux solar furnace for Mexico. Sol. Energy. 84, 792–800 (2010)

    Article  Google Scholar 

  29. Urbano Castelán, J.A., et al.: Estufas rural y urbana de concentración solar; Alternativas energéticas distribuidas, limpias y sustentables, 5 Congreso Internacional de ingeniería física, Azcapotzalco, México, pp. 6 (2010)

    Google Scholar 

  30. Kussul, E., Baydyk, T.: Seasonal thermal energy storage. In: 3rd International Conference & Exhibition on Clean Energy, ICCE 2014, Quebec city, October 20–22, 2014, pp. 258–265 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baydyk, T., Kussul, E., Wunsch II, D.C. (2019). Solar Thermal Power Station for Green Building Energy Supply. In: Intelligent Automation in Renewable Energy. Computational Intelligence Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-02236-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02236-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02235-8

  • Online ISBN: 978-3-030-02236-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics