Skip to main content

On Enumerating Models for the Logic of Paradox Using Tableau

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11142))

Included in the following conference series:

  • 394 Accesses

Abstract

We extend the classic propositional tableau method in order to compute the models given by the semantics of the Priest’s paraconsistent logic of paradox. Without loss of generality, we assume that the knowledge base is represented through propositional statements in NNF, which leads to use only two rules from the classical propositional tableau calculus for computing the paraconsistent models. We consider multisets to represent branches of the tableau tree and we extend the classical closed branches in order to compute the paradoxical models of formulas of the knowledge base. A sound and complete algorithm is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the method does not exactly provide a model considering that some symbols of the language may not get a truth value, however, the symbols that get a truth value are sufficient to satisfy the input formulas.

References

  1. Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for C-systems with generalized finite-valued semantics. J. Log. Comput. 23(3), 517–540 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ben-Ari, M.: Propositional logic: formulas, models, tableaux. In: Ben-Ari, M. (ed.) Mathematical Logic for Computer Science, pp. 7–47. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4129-7_2

    Chapter  MATH  Google Scholar 

  3. Bloesch, A.: A tableau style proof system for two paraconsistent logics. Notre Dame J. Form. Logic. 34(2), 295–301 (1993)

    Article  MathSciNet  Google Scholar 

  4. Carnieli, W.A., Marcos, J.: Tableau systems for logics of formal inconsistency. In: Proceedings of the 2001 International Conference on Artificial Intelligence (IC-AI 2001), vol. 2, pp. 848–852. CSREA Press (2001)

    Google Scholar 

  5. Cholvy, L., Perrussel, L., Thevenin, J.M.: Using inconsistency measures for estimating reliability. Int. J. Approx. Reason. 89, 41–57 (2017)

    Article  MathSciNet  Google Scholar 

  6. D’Agostino, M.: Tableau methods for classical propositional logic. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 45–123. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0_2

    Chapter  MATH  Google Scholar 

  7. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inf. Systems. 27, 159–184 (2006)

    Article  Google Scholar 

  8. Grant, J., Hunter, A.: Measuring consistency gain and information loss in stepwise inconsistency resolution. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI), vol. 6717, pp. 362–373. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22152-1_31

    Chapter  MATH  Google Scholar 

  9. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 191–236. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30597-2_7

    Chapter  Google Scholar 

  10. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency values. Artif. Intell. 174(14), 1007–1026 (2010)

    Article  MathSciNet  Google Scholar 

  11. Kleene, S.C.: Introduction to Metamathematics. North-Holland Publishing Co., Amsterdam (1952)

    MATH  Google Scholar 

  12. Lin, Z., Li, W.: A note on tableaux of logic of paradox. In: Nebel, B., Dreschler-Fischer, L. (eds.) KI 1994. LNCS, vol. 861, pp. 296–307. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58467-6_26

    Chapter  Google Scholar 

  13. Oller, C.: Measuring coherence using LP-models. J. Appl. Logic. 2(4), 451–455 (2004)

    Article  MathSciNet  Google Scholar 

  14. Priest, G.: Logic of paradox. J. Philos. Logic. 8(1), 219–241 (1979)

    Article  MathSciNet  Google Scholar 

  15. Priest, G.: Minimally inconsistent LP. Stud. Logica. 50(2), 321–331 (1991)

    Article  MathSciNet  Google Scholar 

  16. Smullyan, M.: First-Order Logic. Springer, Heidelberg (1968). https://doi.org/10.1007/978-3-642-86718-7

    Book  MATH  Google Scholar 

  17. Thimm, M.: On the expressivity of inconsistency measures. Artif. Intell. 234(C), 120–151 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Pozos-Parra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pozos-Parra, P., Perrussel, L., Thévenin, J.M. (2018). On Enumerating Models for the Logic of Paradox Using Tableau. In: Ciucci, D., Pasi, G., Vantaggi, B. (eds) Scalable Uncertainty Management. SUM 2018. Lecture Notes in Computer Science(), vol 11142. Springer, Cham. https://doi.org/10.1007/978-3-030-00461-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00461-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00460-6

  • Online ISBN: 978-3-030-00461-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics