Skip to main content

Laser Lithotripsy Physics

  • Chapter
  • First Online:

Abstract

The physics of laser lithotripsy are reviewed. The principal mechanisms by which lasers fragment urinary calculi are photomechanical or photothermal. Photomechanical effects are produced in lasers with short pulse durations, typically <1 μs. Such lasers include pulsed dye, Q-switched alexandrite, and FREDDY lasers. Photothermal effects are produced in lasers with long pulse durations, typically >10 μs. Such lasers include Ho:YAG and Er:YAG. Different fragmentation is seen with photomechanical and photothermal lasers. Photomechanical lasers tend to be more efficient whereas photothermal lasers are slower but produce smaller fragments and fragment all compositions. The physics of optical fibers used for Ho:YAG lithotripsy is reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Teichman JMH. Lasers. In: Smith AD, Badlani GH, Bagley DH, et al., eds. Smith’s Textbook of Endourology. Hamilton, Ontario: BC Decker; 2007:37-40.

    Google Scholar 

  2. Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493-494.

    Article  Google Scholar 

  3. Patel CK, Mc Farlane RA, Faust WL. Selective excitation through vibrational energy transfer and optical maser action in N2–CO2. Physiol Rev. 1964;13:617-619.

    CAS  Google Scholar 

  4. Rosemberg SK. Carbon dioxide laser treatment of external genital lesions. Urology. 1985;25:555-558.

    Article  CAS  PubMed  Google Scholar 

  5. Rosemberg SK. Lasers and squamous cell carcinoma of external genitalia. Urology. 1986;27:430-433.

    Article  CAS  PubMed  Google Scholar 

  6. Greenbaum SS, Glogau R, Stegman SJ, et al. Carbon dioxide laser treatment of erythroplasia of Queyrat. J Dermatol Surg Oncol. 1989;15:747-750.

    CAS  PubMed  Google Scholar 

  7. Sorokin PP, Lankard JR. Stimulated emission observed from an organic dye, chloroaluminium phthalocyanine. IBM J Res Dev. 1966;10:162.

    Article  CAS  Google Scholar 

  8. Dretler SP, Watson G, Parrish JA, Murray S. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience. J Urol. 1987;137:386-389.

    CAS  PubMed  Google Scholar 

  9. Bhatta KM, Nishioka NS. Effect of pulse duration on microsecond-domain laser lithotripsy. Lasers Surg Med. 1989;9:454-457.

    Article  CAS  PubMed  Google Scholar 

  10. Teichmann HO, Herrmann TR, Bach T. Technical aspects of lasers in urology. World J Urol. 2007;25:221-225. Epub (2007) May 30.

    Article  PubMed  Google Scholar 

  11. Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992 Jun;72(3):531-558.

    CAS  PubMed  Google Scholar 

  12. Berlien H-P, Muller G. Applied Laser Medicine. Germany: Springer; 2003.

    Google Scholar 

  13. Rink K, Delacrétaz G, Salathé RP. Fragmentation process of current laser lithotriptors. Lasers Surg Med. 1995;16:134-146.

    Article  CAS  PubMed  Google Scholar 

  14. Chan KF, Pfefer TJ, Teichman JMH, Welch AJ. A perspective on laser lithotripsy: the fragmentation processes. J Endourol. 2001;15:257-273.

    Article  CAS  PubMed  Google Scholar 

  15. Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM. Transient cavitation and acoustic emission produced by different laser lithotripters. J Endourol. 1998;12:371-378.

    Article  CAS  PubMed  Google Scholar 

  16. Kang HW, Lee H, Teichman JM, Oh J, Kim J, Welch AJ. Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy. Lasers Surg Med. 2006;38:762-772.

    Article  PubMed  Google Scholar 

  17. Chan KF, Hammer DX, Choi B, et al. Free electron laser lithotripsy: threshold radiant exposures. J Endourol. 2000;14:161-167.

    Article  PubMed  Google Scholar 

  18. Teichman JM, Vassar GJ, Bishoff JT, Bellman GC. Holmium: YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol. 1998;159(1):17-23.

    Article  CAS  PubMed  Google Scholar 

  19. Dretler SP. An evaluation of ureteral laser lithotripsy: 225 consecutive patients. J Urol. 1990;143:267-272.

    CAS  PubMed  Google Scholar 

  20. Fradin D, Bass M. Electron avalanche breakdown induced by ruby laser light. Appl Phys Lett. 1973;22(5):206-208.

    Article  CAS  Google Scholar 

  21. Doukas AG, Zweig AD, Frisoli JK, Birngruber R, Deutsch TF. Non-invasive determination of shock wave pressure generated by optical breakdown. App Phy B. 1991;53:237-245.

    Article  Google Scholar 

  22. Denstedt JD, Chun SS, Miller MD, Eberwein PM. Intracorporeal lithotripsy with the Alexandrite laser. Lasers Surg Med. 1997;20:433-436.

    Article  CAS  PubMed  Google Scholar 

  23. Tschepe J, Gundlach P, Leege N, Hopf J, Müller G, Scherer H. The endoscopic laser lithotripsy of salivary gland calculi and the problem of fiber wear. Opt Fibers Med VII SPIE. 1992;1649:254-263.

    Google Scholar 

  24. Pearle MS, Sech SM, Cobb CG, et al. Safety and efficacy of the Alexandrite laser for the treatment of renal and ureteral calculi. Urol. 1998;51:33-38.

    Article  CAS  PubMed  Google Scholar 

  25. Helfmann J. Untersuchung der physikalischen Phanomene bei der Zertrummerung von Korperkonkrementen durch laserinduzierte Plasmen. In: Advances in Laser Medicine. Landsberg, Zurich: ecomed; 1992.

    Google Scholar 

  26. Helfmann J, Muller G. Laser lithotripsy: process overview. Med Laser Appl. 2001;16:30-37.

    Article  Google Scholar 

  27. Tischer CF, Koort H, Bazo A, Rasch R, Thiede C. Clinical experiences with a new frequency-doubled double-pulse Nd:YAG Laser (FREDDY) for the treatment of urolithiasis. In: Proceedings of SPIE, San Jose, California vol 4609; 2002.

    Google Scholar 

  28. Schafhauser W, Zorcher W, et al. Erste klinische Erfahrungen mit neuem frequenzverdoppeltem Doppelpuls Neodym:YAG Laser in der Therapie der Urolithiasis. Poster presentation at the DGU. Germany: Hamburg; 2000.

    Google Scholar 

  29. Stark L, Carl P, Zauner R. A new technique for Laser-Lithotripsy: FREDDY, the partially frequency-doubled double-Pulse Nd:YAG Laser. Poster presentation at: The 1st International Consultation on Stone Disease, 2001; Paris

    Google Scholar 

  30. Dubosq F, Pasqui F, Girard F, et al. Endoscopic lithotripsy and the FREDDY laser: initial experience. J Endourol. 2006;20:296-299.

    Article  PubMed  Google Scholar 

  31. Stark L, Car P. First clinical experiences of laser lithotripsy using the partially frequency-doubled double-pulse neodymium:YAG laser (“FREDDY”) (abstract). J Urol. 2001;165:362A.

    Google Scholar 

  32. Vassar GJ, Chan KF, Teichman JM, et al. Holmium: YAG lithotripsy: photothermal mechanism. J Endourol. 1999;13:181-190.

    Article  CAS  PubMed  Google Scholar 

  33. Jansen ED, Asshauer T, Frenz M, Motamedi M, Delacretaz G, Welch AJ. Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation. LasersSurg Med. 1996;18:278-293.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidlin FR, Beghuin D, Delacretaz GP, et al. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging. In: SPIE, San Jose, California 3245.123S, 1998.

    Google Scholar 

  35. Chan KF, Vassar GJ, Pfefer TJ, et al. Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med. 1999;25:22-37.

    Article  CAS  PubMed  Google Scholar 

  36. Freiha GS, Glickman RD, Teichman JM. Holmium:YAG laser-induced damage to guidewires: experimental study. J Endourol. 1997;11:331-336.

    Article  CAS  PubMed  Google Scholar 

  37. Teichman JM, Rogenes VJ, McIver BJ, Harris JM. Holmium:yttrium-aluminum-garnet laser cystolithotripsy of large bladder calculi. Urology. 1997;50:44-48.

    Article  CAS  PubMed  Google Scholar 

  38. Teichman JM, Rao RD, Glickman RD, Harris JM. Holmium:YAG percutaneous nephrolithotomy: the laser incident angle matters. J Urol. 1998;159:690-694.

    Article  CAS  PubMed  Google Scholar 

  39. Teichman JM, Rao RD, Rogenes VJ, Harris JM. Ureteroscopic management of ureteral calculi: electrohydraulic versus holmium:YAG lithotripsy. J Urol. 1997;158:1357-1361.

    Article  CAS  PubMed  Google Scholar 

  40. Spore SS, Teichman JM, Corbin NS, Champion PC, Williamson EA, Glickman RD. Holmium: YAG lithotripsy: optimal power settings. J Endourol. 1999;13:559-566.

    Article  CAS  PubMed  Google Scholar 

  41. Lee H, Ryan RT, Teichman JM, et al. Stone retropulsion during holmium:YAG lithotripsy. J Urol. 2003 Mar;169(3):881-885.

    Article  PubMed  Google Scholar 

  42. Finley DS, Petersen J, Abdelshehid C, et al. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J Endourol. 2005;19:1041-1044.

    Article  PubMed  Google Scholar 

  43. Chan KF, Lee H, Teichman JMH, Kamerer A, McGuV HS, Welch AJ. Erbium:YAG laser lithotripsy. J Urol. 2002;168:436-441.

    Article  PubMed  Google Scholar 

  44. Lee H, Kang HW, Teichman JM, Oh J, Welch AJ. Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy. Lasers Surg Med. 2006;38:39-51.

    Article  PubMed  Google Scholar 

  45. Lee H, Ryan RT, Teichman JM, et al. Effect of lithotripsy on holmium:YAG optical beam profile. J Endourol. 2003;17:63-67.

    Article  PubMed  Google Scholar 

  46. Teichman JM, Chan KF, Cecconi PP, et al. Erbium: YAG versus holmium:YAG lithotripsy. J Urol. 2001;165:876-879.

    Article  CAS  PubMed  Google Scholar 

  47. Iwai K, Shi Y, Matsuura Y, Miyagi M. Rugged hollow fiber for the infrared and its use in laser lithotripsy. In: Proceedings of SPIE, vol 4916; 2002:115–119

    Google Scholar 

  48. Teichman JMH, Kang W, Glickman RD, Welch AJ. Update on Erbium:YAG Lithotripsy. AIP Conference Proceedings 2007, Vol 900. London: IOP Institute of Physics Publishing Ltd.; Indianapolis, Indiana 2007:216-227.

    Google Scholar 

  49. Gambling WA. The rise and rise of optical fibers. IEEE J Sel Top Quant Electron. 2000;6(6)):1084.

    Article  CAS  Google Scholar 

  50. Nazif OA, Teichman JMH, Glickman RD, Welch AJ. Review of laser fibers: a practical guide for urologists. J Endourol. 2004;18:818-829.

    Article  PubMed  Google Scholar 

  51. Marks AJ, Mues AC, Knudsen BE, Teichman JMH. Holmium: yttrium-aluminum-garnet lithotripsy proximal fiber failures from laser and fiber mismatch. Urology. 2008;71:1049-1051.

    Article  PubMed  Google Scholar 

  52. Knudsen BE, Glickman RD, Stallman KJ, et al. Performance and safety of holmium: YAG laser optical fibers. J Endourol. 2005;19:1092-1097.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel M. H. Teichman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Marks, A.J., Qiu, J., Milner, T.E., Chan, K.F., Teichman, J.M.H. (2010). Laser Lithotripsy Physics. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_26

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics