Skip to main content

Predicting RNA Structure: Advances and Limitations

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

RNA secondary structures can be predicted using efficient algorithms. A widely used software package implementing a large number of computational methods is the ViennaRNA Package. This chapter describes how to use programs from the ViennaRNA Package to perform common tasks such as prediction of minimum free-energy structures, suboptimal structures, or base pairing probabilities, and generating secondary structure plots with reliability annotation. Moreover, we present recent methods to assess the folding kinetics of an RNA via 2D projections of the energy landscape, identification of local minima and energy barriers, or simulation of RNA folding as a Markov process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7:291–294

    Article  PubMed  CAS  Google Scholar 

  2. Reinharz V, Major F, Waldispuhl J (2012) Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure. Bioinformatics 28:i207–i214

    Article  PubMed  CAS  Google Scholar 

  3. Nussinov R, Pieczenik G, Griggs JR et al (1978) Algorithms for loop matchings. SIAM J Appl Math 35:68–82

    Article  Google Scholar 

  4. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  PubMed  CAS  Google Scholar 

  5. Mathews DH, Disney MD, Childs JL et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101: 7287–7292

    Article  PubMed  CAS  Google Scholar 

  6. Mathews DH, Sabina J, Zuker M et al (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  7. Andronescu M, Condon A, Hoos HH et al (2007) Efficient parameter estimation for RNA secondary structure prediction. Bioinformatics 23:i19–i28

    Article  PubMed  CAS  Google Scholar 

  8. Doshi KJ, Cannone JJ, Cobaugh CW et al (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5:105

    Article  PubMed  Google Scholar 

  9. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    Article  PubMed  CAS  Google Scholar 

  10. Lorenz R, Bernhart SH, Höner zu Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  Google Scholar 

  11. Wuchty S, Fontana W, Hofacker IL et al (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  PubMed  CAS  Google Scholar 

  12. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280–7301

    Article  PubMed  CAS  Google Scholar 

  13. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    Article  PubMed  CAS  Google Scholar 

  14. Lorenz R, Flamm C, Hofacker IL (2009) 2D projections of RNA folding landscapes. In: Grosse I, Neumann S, Posch S, Schreiber F, Stadler PF (eds) German conference on bioinformatics, Bonn. Lecture notes in informatics. Gesellschaft f. Informatik, pp 11–20

    Google Scholar 

  15. Flamm C, Hofacker IL, Stadler PF et al (2002) Barrier trees of degenerate landscapes. Zeitschrift für Physikalische Chemie 216:155

    Article  CAS  Google Scholar 

  16. Wolfinger MT, Svrcek-Seiler WA, Flamm C et al (2004) Efficient computation of RNA folding dynamics. J Phys A Math Gen 37:4731

    Article  CAS  Google Scholar 

  17. Gruber AR, Lorenz R, Bernhart SH et al (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Austrian Science Foundation FWF project “SFB F43 RNA regulation of the transcriptome.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hofacker, I.L., Lorenz, R. (2014). Predicting RNA Structure: Advances and Limitations. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics