Skip to main content

Integrative Prediction of Gene Function and Platinum-Free Survival from Genomic and Epigenetic Features in Ovarian Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

Abstract

The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to discover genes critical to the development, progression, and therapeutic resistance of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatics analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We identify changes in DNA methylation and expression specifically for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic gene function from integrative analysis of three modalities: copy number variation, DNA methylation, and gene expression. Our method (1) calculates the extent of genomic and epigenetic alterations of defined tumor suppressor and oncogenic features for the functional prediction of significant ovarian cancer gene candidates and (2) identifies the functional activity or inactivity of known tumor suppressors and oncogenes in ovarian cancer. We applied our protocol on 42 primary serous ovarian cancer samples using MOMA-ROMA representational array assays. Additionally, we provide the basis for incorporating epigenetic profiles of ovarian tumors for the purposes of platinum-free survival prediction in the context of TCGA data.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ting AH, McGarvey KM, Baylin SB (2006) The cancer epigenome-components and functional correlates. Genes Dev 20:3215–3231

    Article  PubMed  CAS  Google Scholar 

  2. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  PubMed  CAS  Google Scholar 

  3. Bell D, Berchuck A, Birrer M, Chien J, Cramer DW et al (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  CAS  Google Scholar 

  4. Bast RC Jr, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9:415–428

    Article  PubMed  CAS  Google Scholar 

  5. Degenhardt YY, Wooster R, McCombie RW, Lucito R, Powers S (2008) High-content analysis of cancer genome DNA alterations. Curr Opin Genet Dev 18:68–72

    Article  PubMed  CAS  Google Scholar 

  6. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10:59–64

    Article  PubMed  CAS  Google Scholar 

  7. Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37(Suppl):S11–S17

    Article  PubMed  CAS  Google Scholar 

  8. Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M et al (2008) Functional copy-number alterations in cancer. PLoS One 3:e3179

    Article  PubMed  Google Scholar 

  9. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479

    Article  PubMed  CAS  Google Scholar 

  10. Ramakrishna M, Williams LH, Boyle SE, Bearfoot JL, Sridhar A et al (2010) Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS One 5:e9983

    Article  PubMed  Google Scholar 

  11. Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K et al (2008) Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther 7(11):1793–1802

    Article  PubMed  CAS  Google Scholar 

  12. Despierre E, Lambrechts D, Neven P, Amant F, Lambrechts S et al (2010) The molecular genetic basis of ovarian cancer and its roadmap towards a better treatment. Gynecol Oncol 117:358–365

    Article  PubMed  CAS  Google Scholar 

  13. Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB et al (2010) Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One 5:e8665

    Article  PubMed  Google Scholar 

  14. Gorringe KL, George J, Anglesio MS, Ramakrishna M, Etemadmoghadam D et al. (2010) Copy number analysis identifies novel interactions between genomic loci in ovarian cancer. PLoS One 5:e11408

    Google Scholar 

  15. Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J et al (2009) Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 15:1417–1427

    Article  PubMed  CAS  Google Scholar 

  16. Malek JA, Mery E, Mahmoud YA, Al-Azwani EK, Roger L et al (2011) Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis. PLoS One 6:e28561

    Article  PubMed  CAS  Google Scholar 

  17. Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219:243–250

    Article  PubMed  CAS  Google Scholar 

  18. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  PubMed  CAS  Google Scholar 

  19. Sadikovic B, Al-Romaih K, Squire JA, Zielenska M (2008) Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 9:394–408

    Article  PubMed  CAS  Google Scholar 

  20. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Article  PubMed  CAS  Google Scholar 

  21. Fang F, Turcan S, Rimner A, Kaufman A, Giri D et al (2011) Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 3:75ra25

    Article  PubMed  Google Scholar 

  22. Houshdaran S, Hawley S, Palmer C, Campan M, Olsen MN et al (2010) DNA methylation profiles of ovarian epithelial carcinoma tumors and cell lines. PLoS One 5:e9359

    Article  PubMed  Google Scholar 

  23. Shih IM, Chen L, Wang CC, Gu J, Davidson B et al (2010) Distinct DNA methylation profiles in ovarian serous neoplasms and their implications in ovarian carcinogenesis. Am J Obstet Gynecol 203(6):584.e1–584.e22

    Article  CAS  Google Scholar 

  24. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  PubMed  CAS  Google Scholar 

  25. Veeck J, Esteller M (2010) Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 15:5–17

    Article  PubMed  Google Scholar 

  26. Iacobuzio-Donahue CA (2009) Epigenetic changes in cancer. Annu Rev Pathol 4:229–249

    Article  PubMed  CAS  Google Scholar 

  27. Campan M, Moffitt M, Houshdaran S, Shen H, Widschwendter M et al (2011) Genome-scale screen for DNA methylation-based detection markers for ovarian cancer. PLoS One 6:e28141

    Article  PubMed  CAS  Google Scholar 

  28. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  PubMed  CAS  Google Scholar 

  29. Yap TA, Carden CP, Kaye SB (2009) Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 9:167–181

    Article  PubMed  CAS  Google Scholar 

  30. Berger AH, Knudson AG, Pandolfi PP (2011) A continuum model for tumour suppression. Nature 476:163–169

    Article  PubMed  CAS  Google Scholar 

  31. Mankoo PK, Shen R, Schultz N, Levine DA, Sander C (2011) Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. PLoS One 6:e24709

    Article  PubMed  CAS  Google Scholar 

  32. Wrzeszczynski KO, Varadan V, Byrnes J, Lum E, Kamalakaran S et al (2011) Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS One 6:e28503

    Article  PubMed  CAS  Google Scholar 

  33. Lucito R, Healy J, Alexander J, Reiner A, Esposito D et al (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 13:2291–2305

    Article  PubMed  CAS  Google Scholar 

  34. Lucito R, Byrnes J (2009) Comparative genomic hybridization by representational oligonucleotide microarray analysis. Methods Mol Biol 556:33–46

    Article  PubMed  CAS  Google Scholar 

  35. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R et al (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41

    Article  PubMed  Google Scholar 

  36. Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572

    Article  PubMed  Google Scholar 

  37. Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23:657–663

    Article  PubMed  CAS  Google Scholar 

  38. Kamalakaran S, Kendall J, Zhao X, Tang C, Khan S et al (2009) Methylation detection oligonucleotide microarray analysis: a high-resolution method for detection of CpG island methylation. Nucleic Acids Res 37:e89

    Article  PubMed  Google Scholar 

  39. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  40. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  41. Kamalakaran S, Varadan V, Giercksky Russnes HE, Levy D, Kendall J et al (2010) DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol 5:77–92

    Article  PubMed  Google Scholar 

  42. Consortium TIH (2003) The International HapMap Project. Nature 426:789–796

    Article  Google Scholar 

  43. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Wrzeszczynski, K.O., Varadan, V., Kamalakaran, S., Levine, D.A., Dimitrova, N., Lucito, R. (2013). Integrative Prediction of Gene Function and Platinum-Free Survival from Genomic and Epigenetic Features in Ovarian Cancer. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics