Skip to main content

Uniparental Embryos in the Study of Genomic Imprinting

  • Protocol
  • First Online:
Genomic Imprinting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 925))

  • 2826 Accesses

Abstract

Nuclear transplantation has been used to study genomic imprinting. Available nuclear transfer methods include pronuclear transfer (PNT), intracytoplasmic sperm injection, and round spermatid injection. By generating uniparental embryos that have exclusively paternal or maternal genomes, it is possible to study the functions of the parental genomes separately. It is possible to compare functions in haploid and diploid states. In addition, nuclear transfer allows the effects of the ooplasm, including mitochondria, to be distinguished from effects of the maternally inherited chromosomes. PNTs can also be used to study epigenetic modifications of the parental genomes by the ooplasm. This chapter reviews the methods employed to generate uniparental embryonic constructs for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Berardino MA (1997) Genomimc potential of differentiated cells. Columbia University Press, New York

    Google Scholar 

  2. Campbell KH, McWhir J, Ritchie WA et al (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  PubMed  CAS  Google Scholar 

  3. Wakayama T, Perry AC, Zuccotti M et al (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  PubMed  CAS  Google Scholar 

  4. Davidson RI (1974) Gene expression in somatic cell hybrids. Annu Rev Genet 8:195–218

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  6. Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–498

    Article  PubMed  CAS  Google Scholar 

  7. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  PubMed  CAS  Google Scholar 

  8. Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  PubMed  CAS  Google Scholar 

  9. Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Article  PubMed  CAS  Google Scholar 

  10. McGrath J, Solter D (1983) Nuclear transplantation in mouse embryos. J Exp Zool 228:355–362

    Article  PubMed  CAS  Google Scholar 

  11. McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300–1302

    Article  PubMed  CAS  Google Scholar 

  12. Latham KE, Doherty AS, Scott CD et al (1994) Igf2r and Igf2 gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting. Genes Dev 8:290–299

    Article  PubMed  CAS  Google Scholar 

  13. Rossant J, Guillemot F, Tanaka M et al (1998) Mash2 is expressed in oogenesis and preimplantation development but is not required for blastocyst formation. Mech Dev 73:183–191

    Article  PubMed  CAS  Google Scholar 

  14. Borgel J, Guibert S, Li Y et al (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100

    Article  PubMed  CAS  Google Scholar 

  15. Kim JM, Ogura A (2009) Changes in allele-specific association of histone modifications at the imprinting control regions during mouse preimplantation development. Genesis 47:611–616

    Article  PubMed  CAS  Google Scholar 

  16. Kono T (2006) Genomic imprinting is a barrier to parthenogenesis in mammals. Cytogenet Genome Res 113:31–35

    Article  PubMed  CAS  Google Scholar 

  17. Wu Q, Kumagai T, Kawahara M et al (2006) Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term. Reproduction 131:481–488

    Article  PubMed  CAS  Google Scholar 

  18. Hiura H, Obata Y, Komiyama J et al (2006) Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11:353–361

    Article  PubMed  CAS  Google Scholar 

  19. Kimura Y, Tateno H, Handel MA et al (1998) Factors affecting meiotic and developmental competence of primary spermatocyte nuclei injected into mouse oocytes. Biol Reprod 59:871–877

    Article  PubMed  CAS  Google Scholar 

  20. Ogura A, Yanagimachi R (1995) Spermatids as male gametes. Reprod Fertil Dev 7:155–158, discussion 158–159

    Article  PubMed  CAS  Google Scholar 

  21. Latham KE, Solter D (1991) Effect of egg composition on the developmental capacity of androgenetic mouse embryos. Development 113:561–568

    PubMed  CAS  Google Scholar 

  22. Yeo S, Lee KK, Han YM et al (2005) Methylation changes of lysine 9 of histone H3 during preimplantation mouse development. Mol Cells 20:423–428

    PubMed  CAS  Google Scholar 

  23. Santos F, Peters AH, Otte AP et al (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236

    Article  PubMed  CAS  Google Scholar 

  24. Santos F, Hendrich B, Reik W et al (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  25. Park JS, Jeong YS, Shin ST et al (2007) Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev Dyn 236:2523–2533

    Article  PubMed  CAS  Google Scholar 

  26. van der Heijden GW, Dieker JW, Derijck AA et al (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    Article  PubMed  Google Scholar 

  27. McLay DW, Clarke HJ (2003) Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125:625–633

    Article  PubMed  CAS  Google Scholar 

  28. Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12

    Article  PubMed  Google Scholar 

  29. Howell CY, Steptoe AL, Miller MW et al (1998) cis-Acting signal for inheritance of imprinted DNA methylation patterns in the preimplantation mouse embryo. Mol Cell Biol 18:4149–4156

    PubMed  CAS  Google Scholar 

  30. Latham KE (1994) Strain-specific differences in mouse oocytes and their contributions to epigenetic inheritance. Development 120:3419–3426

    PubMed  CAS  Google Scholar 

  31. Latham KE, Sapienza C (1998) Localization of genes encoding egg modifiers of paternal genome function to mouse chromosomes one and two. Development 125:929–935

    PubMed  CAS  Google Scholar 

  32. Pickard B, Dean W, Engemann S et al (2001) Epigenetic targeting in the mouse zygote marks DNA for later methylation: a mechanism for maternal effects in development. Mech Dev 103:35–47

    Article  PubMed  CAS  Google Scholar 

  33. Liang CG, Han Z, Cheng Y et al (2009) Effects of ooplasm transfer on paternal genome function in mice. Hum Reprod 24:2718–2728

    Article  PubMed  CAS  Google Scholar 

  34. Latham KE, Rambhatla L (1995) Expression of X-linked genes in androgenetic, gynogenetic, and normal mouse preimplantation embryos. Dev Genet 17:212–222

    Article  PubMed  CAS  Google Scholar 

  35. Latham KE, Akutsu H, Patel B et al (2002) Comparison of gene expression during preimplantation development between diploid and haploid mouse embryos. Biol Reprod 67:386–392

    Article  PubMed  CAS  Google Scholar 

  36. Han Z, Chung YG, Gao S et al (2005) Maternal factors controlling blastomere fragmentation in early mouse embryos. Biol Reprod 72:612–618

    Article  PubMed  CAS  Google Scholar 

  37. Kaneko-Ishino T, Kuroiwa Y, Miyoshi N et al (1995) Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 11:52–59

    Article  PubMed  CAS  Google Scholar 

  38. Ozil JP, Banrezes B, Toth S et al (2006) Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol 300:534–544

    Article  PubMed  CAS  Google Scholar 

  39. Kuretake S, Kimura Y, Hoshi K et al (1996) Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod 55:789–795

    Article  PubMed  CAS  Google Scholar 

  40. Lawitts JA, Biggers JD (1991) Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil 91:543–556

    Article  PubMed  CAS  Google Scholar 

  41. Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9:557–582

    Article  PubMed  CAS  Google Scholar 

  42. Chatot CL, Ziomek CA, Bavister BD et al (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86:679–688

    Article  PubMed  CAS  Google Scholar 

  43. Chung YG, Gao S, Latham KE (2006) Optimization of procedures for cloning by somatic cell nuclear transfer in mice. Methods Mol Biol 348:111–124

    Article  PubMed  CAS  Google Scholar 

  44. Latham KE, Westhusin ME (2000) Nuclear transplantation and cloning in mammals. Methods Mol Biol 136:405–425

    PubMed  CAS  Google Scholar 

  45. Kimura Y, Yanagimachi R (1995) Intra­cytoplasmic sperm injection in the mouse. Biol Reprod 52:709–720

    Article  PubMed  CAS  Google Scholar 

  46. Ogura A, Ogonuki N, Miki H et al (2005) Microinsemination and nuclear transfer using male germ cells. Int Rev Cytol 246:189–229

    Article  PubMed  CAS  Google Scholar 

  47. Yanagimachi R (2005) Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod Biomed Online 10:247–288

    Article  PubMed  Google Scholar 

  48. Miki H, Hirose M, Ogonuki N et al (2009) Efficient production of androgenetic embryos by round spermatid injection. Genesis 47:155–160

    Article  PubMed  CAS  Google Scholar 

  49. Kishigami S, Wakayama S, Nguyen VT et al (2004) Similar time restriction for intracytoplasmic sperm injection and round spermatid injection into activated oocytes for efficient offspring production. Biol Reprod 70:1863–1869

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Latham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cheng, Y., Amarnath, D., Latham, K.E. (2012). Uniparental Embryos in the Study of Genomic Imprinting. In: Engel, N. (eds) Genomic Imprinting. Methods in Molecular Biology, vol 925. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-011-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-011-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-010-6

  • Online ISBN: 978-1-62703-011-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics