Skip to main content

Three-Dimensional In Vitro Culture Techniques for Mesenchymal Stem Cells

  • Protocol
  • First Online:
Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 916))

Abstract

In recent years there has been a growing interest in culturing adherent cells using three-dimensional (3D) techniques, rather than more conventional 2D culture methods. This interest emerges from the realization that growing cells on plastic surfaces cannot truly re-create 3D in vivo conditions and therefore might be limiting the cells’ potential. In addition, adult stem cells exist in specialized microenvironments, or niches, where the spatial organization of different niche elements (such as different cell types, extracellular matrix) contributes significantly to stem cell maintenance, which cannot be represented using 2D in vitro models. We have generated a range of different 3D approaches for the analysis of mesenchymal stem cells (MSCs) using both mono- and co-culture environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etheridge SL, Spencer GJ, Heath DJ, Genever PG (2004) Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22:849–860

    Article  PubMed  CAS  Google Scholar 

  2. Huang Z, Ren PG, Ma T, Smith RL, Goodman SB (2010) Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine 51:305–10

    Article  PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  4. Mauney JR, Kirker-Head C, Abrahamson L, Gronowicz G, Volloch V, Kaplan DL (2006) Matrix-mediated retention of in vitro osteogenic differentiation potential and in vivo bone-forming capacity by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. J Biomed Mater Res A 79:464–475

    PubMed  Google Scholar 

  5. Mauney JR, Volloch V, Kaplan DL (2005) Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. Biomaterials 26:6167–6175

    Article  PubMed  CAS  Google Scholar 

  6. Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357

    Article  PubMed  CAS  Google Scholar 

  7. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  8. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295:C1037–1044

    Article  PubMed  CAS  Google Scholar 

  9. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L et al (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32:112–122

    Article  PubMed  Google Scholar 

  10. Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 103:2488–2493

    Article  PubMed  CAS  Google Scholar 

  11. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682

    Article  PubMed  CAS  Google Scholar 

  12. Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5:1571–1584

    Article  PubMed  CAS  Google Scholar 

  13. Campos LS (2004) Neurospheres: insights into neural stem cell biology. J Neurosci Res 78:761–769

    Article  PubMed  CAS  Google Scholar 

  14. Bates RC, Edwards NS, Yates JD (2000) Spheroids and cell survival. Crit Rev Oncol Hematol 36:61–74

    Article  PubMed  CAS  Google Scholar 

  15. Frith JE, Thomson B, Genever PG (2010) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 16:735–749

    Article  PubMed  CAS  Google Scholar 

  16. Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y et al (2009) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30:2705–2715

    Article  PubMed  CAS  Google Scholar 

  17. Saleh FA, Whyte M, Ashton P, Genever PG (2011) Regulation of mesenchymal stem cell activity by endothelial cells. Stem Cells Dev 20:391–403

    Article  PubMed  CAS  Google Scholar 

  18. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA, Weinberg RA (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:785–95

    Article  PubMed  CAS  Google Scholar 

  19. Fehse B, Kustikova OS, Bubenheim M, Baum C (2004) Pois(s)on–it’s a question of dose. Gene Ther 11:879–81

    Article  PubMed  CAS  Google Scholar 

  20. Liizumi S, Nomura Y, So S, Uegaki K, Aoki K, Shibahara K, Adachi N, Koyama H (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41:311–316

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by BBSRC, Smith and Nephew (FAS, JEF), and the Dr. Hadwen Trust for Humane Research, the UK’s leading medical charity funding exclusively nonanimal research techniques to replace animal experiments (JAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Genever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saleh, F.A., Frith, J.E., Lee, J.A., Genever, P.G. (2012). Three-Dimensional In Vitro Culture Techniques for Mesenchymal Stem Cells. In: Mace, K., Braun, K. (eds) Progenitor Cells. Methods in Molecular Biology, vol 916. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-980-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-980-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-979-2

  • Online ISBN: 978-1-61779-980-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics