Skip to main content

Recombinant Protein Expression in Milk of Livestock Species

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 824))

Abstract

Producing complex recombinant proteins in the milk of transgenic animals offers several advantages: large amounts of proteins can be obtained, and in most cases, these proteins are properly folded, assembled, cleaved, and glycosylated. The level of expression of foreign genes in the mammalian gland cannot be predicted in all cases, and appropriate vectors must be used. The main elements of these vectors are as follows: a well-characterized specific promoter, the coding region of the gene of interest, preferably with a homologous or heterologous intron, to improve transcription efficiency, and an insulator or boundary element to counteract the chromosomal position effects at the integration site. Once high expression levels are achieved, and the recombinant protein is purified, an essential step in the analysis of the final product is determining its degree of glycosylation. This is an important readout because it can affect among other parameters the stability and immunogenicity of the recombinant protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Houdebine, L. M. (2009) Production of pharmaceutical proteins by transgenic animals. Compar Immunol. Microbiol Infect. Dis. 32, 107–121.

    Article  Google Scholar 

  2. Fan, J., and Watanabe, T. (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol. Therap. 99, 261–282.

    Article  CAS  Google Scholar 

  3. Robl, J. M., Wang, Z., Kasinathan, P., et al., (2007) Transgenic animal production and animal biotechnology. Theriogenology 67, 127–133.

    Article  PubMed  CAS  Google Scholar 

  4. Sumer, H., Liu, J., Tat, P., et al., (2009) Somatic cell nuclear transfer: pros and cons, J. Stem Cells 4, 85–93.

    Google Scholar 

  5. Wall, R. J. (2001) Pronuclear microinjection, Cloning Stem Cells 3, 209–220.

    Article  PubMed  CAS  Google Scholar 

  6. van Veen, H. A., Geerts, M. E., van Berkel, P. H., et al., (2002) Analytical cation-exchange chromatography to assess the identity, purity, and N-terminal integrity of human lactoferrin, Anal. Biochem. 309, 60–66.

    Article  PubMed  Google Scholar 

  7. Koles, K., van Berkel, P. H., Pieper, F. R., et al.,(2004) N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits. Glycobiology 14, 51–64.

    Article  PubMed  CAS  Google Scholar 

  8. Jongen, S. P., Gerwig, G. J., Leeflang, B. R., et al., (2007) N-glycans of recombinant human acid alpha-glucosidase expressed in the milk of transgenic rabbits. Glycobiology 17, 600–619.

    Article  PubMed  CAS  Google Scholar 

  9. Gil, G. C., Velander, W. H., and Van Cott, K. E. (2008) Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk. Glycobiology 18, 526–539.

    Article  PubMed  CAS  Google Scholar 

  10. Fujiwara, Y., Miwa, M., Takahashi, R., et al., (1999) High-level expressing YAC vector for transgenic animal bioreactors. Molec. Reprod. Develop. 52, 414–420.

    Article  CAS  Google Scholar 

  11. Fujiwara, Y., Takahashi, R. I., Miwa, M., et al., (1999) Analysis of control elements for position-independent expression of human alpha-lactalbumin YAC. Molec. Reprod. Develop. 54, 17–23.

    Article  CAS  Google Scholar 

  12. Rival-Gervier, S., Viglietta, C., Maeder, C., et al., (2002) Position-independent and tissue-specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice. Molec. Reprod. Develop. 63, 161–167.

    Article  CAS  Google Scholar 

  13. Yang, P., Wang, J., Gong, G., et al., (2008) Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin, PloS One 3, e3453.

    Article  PubMed  Google Scholar 

  14. Baranyi, M., Hiripi, L., Szabo, L., et al.,(2007) Isolation and some effects of functional, low-phenylalanine kappa-casein expressed in the milk of transgenic rabbits. J. Biotechnol. 128, 383–392.

    Article  PubMed  CAS  Google Scholar 

  15. Raju, T. S., Briggs, J. B., Borge, S. M., et al., (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10, 477–486.

    Article  PubMed  CAS  Google Scholar 

  16. Edmunds, T., Van Patten, S. M., Pollock, J., et al., (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin Blood 914561–4571.

    PubMed  CAS  Google Scholar 

  17. Montesino, R., Toledo, J. R., Sanchez, O., et al., (2008) Monosialylated biantennary N-glycoforms containing GalNAc-GlcNAc antennae predominate when human EPO is expressed in goat milk. Arch. Biochem. Biophys. 470, 163–175.

    Article  PubMed  CAS  Google Scholar 

  18. Maga, E. A., and Murray, J. D. (1995) Mammary gland expression of transgenes and the potential for altering the properties of milk, Biotechnology 13, 1452–1457.

    Article  PubMed  CAS  Google Scholar 

  19. Yen, C. H., Yang, C. K., Chen, I. C., et al., (2008) Expression of recombinant Hirudin in transgenic mice milk driven by the goat beta-casein promoter. Biotechnol. J. 3, 1067–1077.

    Article  PubMed  CAS  Google Scholar 

  20. Lenasi, T., Kokalj-Vokac, N., Narat, M., et al., (2005) Functional study of the equine beta-casein and kappa-casein gene promoters, J. Dairy Res. 72 Spec No, 34–43.

    Google Scholar 

  21. Bhure, S., and Sharma, B. (2007) Cloning and characterization of ovine alphaS1-casein gene promoter: a transfection study in rat mammary gland cell line. DNA Seq. 18, 39–46.

    PubMed  CAS  Google Scholar 

  22. Lois, C., Hong, E. J., Pease, S., et al., (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872.

    Article  PubMed  CAS  Google Scholar 

  23. Bijvoet, A. G., Van Hirtum, H., Kroos, M. A., et al., (1999) Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Human Molec. Gen. 8, 2145–2153.

    Article  CAS  Google Scholar 

  24. Hiripi, L., Baranyi, M., Szabo, L., et al., (2000) Effect of rabbit kappa-casein expression on the properties of milk from transgenic mice. J. Dairy Res. 67, 541–550.

    Article  PubMed  CAS  Google Scholar 

  25. Chung, J. H., Whiteley, M., and Felsenfeld, G. (1993) A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514.

    Article  PubMed  CAS  Google Scholar 

  26. Filippova, G. N. (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr. Top. Develop. Biol. 80, 337–360.

    Article  CAS  Google Scholar 

  27. West, A. G., Huang, S., Gaszner, M., et al., (2004) Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Molec. Cell 16, 453–463.

    Article  PubMed  CAS  Google Scholar 

  28. Huang, S., Li, X., Yusufzai, T. M., et al., (2007) USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier, Molec. Cell. Biol.27, 7991–8002.

    Google Scholar 

  29. Mutskov, V. J., Farrell, C. M., Wade, P. A., et al., (2002) The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Develop. 16, 1540–1554.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, Y., DeMayo, F. J., Tsai, S. Y., et al., (1997) Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotechnol. 15, 239–243.

    Article  CAS  Google Scholar 

  31. Potts, W., Tucker, D., Wood, H., et al., (2000) Chicken beta-globin 5′HS4 insulators function to reduce variability in transgenic founder mice. Biochem. Biophys. Res. Comm. 273, 1015–1018.

    Article  PubMed  CAS  Google Scholar 

  32. Cremer, T., Kreth, G., Koester, H., et al., (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit. Rev. Eukaryiot. Gene Exp. 10, 179–212.

    CAS  Google Scholar 

  33. Phi-Van, L., and Stratling, W. H. (1996) Dissection of the ability of the chicken lysozyme gene 5′ matrix attachment region to stimulate transgene expression and to dampen position effects. Biochemistry 35, 10735–10742.

    Article  PubMed  CAS  Google Scholar 

  34. Goetze, S., Baer, A., Winkelmann, S., et al., (2005) Performance of genomic bordering elements at predefined genomic loci. Molec. Cell. Biol. 25, 2260–2272.

    Article  PubMed  CAS  Google Scholar 

  35. Evans, K., Ott, S., Hansen, A., et al., (2007) A comparative study of S/MAR prediction tools, BMC Bioinformatics 8, 71.

    Article  PubMed  Google Scholar 

  36. Lunyak, V. V., Prefontaine, G. G., Nunez, E., et al., (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis, Science 317, 248–251.

    Article  PubMed  CAS  Google Scholar 

  37. Willoughby, D. A., Vilalta, A., and Oshima, R. G. (2000) An Alu element from the K18 gene confers position-independent expression in transgenic mice, The J. Biol.Chem. 275, 759–768.

    Article  CAS  Google Scholar 

  38. Li, Q., Peterson, K. R., Fang, X., et al., (2002) Locus control regions, Blood 100, 3077–3086.

    Article  PubMed  CAS  Google Scholar 

  39. Grosveld, F., van Assendelft, G. B., Greaves, D. R., et al., (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985.

    Article  PubMed  CAS  Google Scholar 

  40. Bessa, J., Tena, J. J., de la Calle-Mustienes, E., et al., (2009) Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish, Dev. Dyn. 238, 2409–2417.

    Article  PubMed  CAS  Google Scholar 

  41. Montoliu, L., Roy, R., Regales, L., et al., (2009) Design of vectors for transgene expression: The use of genomic comparative approaches, Comp. Immunol. Microbiol. Infect. Dis. 32, 81–90.

    Article  PubMed  Google Scholar 

  42. Woolfe, A., Goodson, M., Goode, D. K., et al., (2005) Highly conserved non-coding sequences are associated with vertebrate development, PLoS Biology 3, e7.

    Article  PubMed  Google Scholar 

  43. de la Calle-Mustienes, E., Feijoo, C. G., Manzanares, M., et al., (2005) A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 15, 1061–1072.

    Article  PubMed  Google Scholar 

  44. Gerencser, A., Barta, E., Boa, S., et al., (2002) Comparative analysis on the structural features of the 5′ flanking region of kappa-casein genes from six different species. Genet. Sel. Evol. 34, 117–128.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, X. W., Model, P., and Heintz, N. (1997) Homologous recombination based modification in Escherichia coli and germline ­transmission in transgenic mice of a bacterial artificial chromosome, Nature Biotechnol. 15, 859–865.

    Article  CAS  Google Scholar 

  46. Sparwasser, T., Gong, S., Li, J. Y., et al., (2004) General method for the modification of different BAC types and the rapid generation of BAC transgenic mice, Genesis 38, 39–50.

    Article  PubMed  CAS  Google Scholar 

  47. Muyrers, J. P., Zhang, Y., Testa, G., et al., (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucl. Acids Res. 27, 1555–1557.

    Article  PubMed  CAS  Google Scholar 

  48. Van Keuren, M. L., Gavrilina, G. B., Filipiak, W. E., et al., (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res. 18, 769–785.

    Article  PubMed  CAS  Google Scholar 

  49. DiTullio, P., Cheng, S. H., Marshall, J., et al., (1992) Production of cystic fibrosis transmembrane conductance regulator in the milk of transgenic mice. Bio/technology 10, 74–77.

    Article  PubMed  CAS  Google Scholar 

  50. Bodrogi, L., Brands, R., Raaben, W., et al., (2006) High level expression of tissue-nonspecific alkaline phosphatase in the milk of transgenic rabbits. Transgenic Res. 15, 627–636.

    Article  PubMed  CAS  Google Scholar 

  51. Ahn, Y. S., and Snow, L. D. (1993) Selective extraction of alkaline phosphatase and 5′-­nucleotidase from milk fat globule membranes by a single phase n-butanol procedure. Prep. Biochem. 23, 409–419.

    Article  PubMed  CAS  Google Scholar 

  52. Baldassarre, H., Hockley, D. K., Dore, M., et al., (2008) Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk. Transgenic Res. 17, 73–84.

    Article  PubMed  CAS  Google Scholar 

  53. Van Cott, K. E., Lubon, H., Russell, C. G., et al., (1997) Phenotypic and genotypic stability of multiple lines of transgenic pigs expressing recombinant human protein C. Transgenic Res. 6, 203–212.

    Article  PubMed  Google Scholar 

  54. Hiripi, L., Makovics, F., Halter, R., et al., (2003) Expression of active human blood clotting factor VIII in mammary gland of transgenic rabbits. DNA Cell Biol. 22, 41–45.

    Article  PubMed  CAS  Google Scholar 

  55. Al-Ghobashy, M. A., Williams, M. A., Brophy, B., et al., (2009) On-line casein micelle disruption for downstream purification of recombinant human myelin basic protein produced in the milk of transgenic cows. J. Chromat. 877, 1667–1677.

    CAS  Google Scholar 

  56. Wang, J., Yang, P., Tang, B., et al., (2008) Expression and characterization of bioactive recombinant human alpha-lactalbumin in the milk of transgenic cloned cows. J. Dairy Sci. 91, 4466–4476.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant OM-00118/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Bösze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bösze, Z., Hiripi, L. (2012). Recombinant Protein Expression in Milk of Livestock Species. In: Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 824. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-433-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-433-9_34

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-432-2

  • Online ISBN: 978-1-61779-433-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics