Skip to main content

MicroRNA Circuits for Transcriptional Logic

  • Protocol
  • First Online:
Synthetic Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

One of the longstanding challenges in synthetic biology is rational design of complex regulatory circuitry with multiple biological inputs, complex internal processing, and physiologically active outputs. We have previously proposed how to address this challenge in the case of transcription factor inputs. Here we describe the methods used to construct these synthetic circuits, capable of performing logic integration of transcription factor inputs using microRNA expression vectors and RNA interference (RNAi). The circuits operate in mammalian cells and they can serve as starting point for more complex synthetic information processing networks in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benenson, Y. (2009) Biocomputers: from test tubes to live cells, Molecular Biosystems 5, 675–685.

    Article  PubMed  CAS  Google Scholar 

  2. Benenson, Y. (2009) RNA-based computation in live cells, Current Opinion in Biotechnology 20, 471–478.

    Article  PubMed  CAS  Google Scholar 

  3. Weiss, R., Homsy, G. E., and Knight, T. F. (1999) Toward in vivo digital circuits, In Evolution as Computation: DIMACS Workshop (Landweber, L. F., and Winfree, E., Eds.), pp 275–295, Springer.

    Google Scholar 

  4. Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli, Nature 403, 339–342.

    Article  PubMed  CAS  Google Scholar 

  5. Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators, Nature 403, 335–338.

    Article  PubMed  CAS  Google Scholar 

  6. Isaacs, F. J., Dwyer, D. J., and Collins, J. J. (2006) RNA synthetic biology, Nature Biotechnology 24, 545–554.

    Article  PubMed  CAS  Google Scholar 

  7. Canton, B., Labno, A., and Endy, D. (2008) Refinement and standardization of synthetic biological parts and devices, Nature Biotechnology 26, 787–793.

    Article  PubMed  CAS  Google Scholar 

  8. Weber, W., and Fussenegger, M. (2002) Artificial mammalian gene regulation networks – novel approaches for gene therapy and bioengineering, Journal of Biotechnology 98, 161–187.

    Article  PubMed  CAS  Google Scholar 

  9. Guet, C. C., Elowitz, M. B., Hsing, W. H., and Leibler, S. (2002) Combinatorial synthesis of genetic networks, Science 296, 1466–1470.

    Article  PubMed  CAS  Google Scholar 

  10. Cox, R. S., Surette, M. G., and Elowitz, M. B. (2007) Programming gene expression with combinatorial promoters, Molecular Systems Biology 3, 11.

    Google Scholar 

  11. Ellis, T., Wang, X., and Collins, J. J. (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions, Nature Biotechnology 27, 465–471.

    Article  PubMed  CAS  Google Scholar 

  12. Kramer, B. P., Fischer, C., and Fussenegger, M. (2004) BioLogic gates enable logical transcription control in mammalian cells, Biotechnology and Bioengineering 87, 478–484.

    Article  PubMed  CAS  Google Scholar 

  13. Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss, R., and Benenson, Y. (2007) A universal RNAi-based logic evaluator that operates in mammalian cells, Nature Biotechnology 25, 795–801.

    Article  PubMed  CAS  Google Scholar 

  14. Xie, Z., Liu, S. J., Bleris, L., and Benenson, Y. (2010) Logic integration of mRNA signals by an RNAi-based molecular computer, Nucleic Acids Research 38, 2692–2701.

    Article  PubMed  CAS  Google Scholar 

  15. Leisner, M., Bleris, L., Lohmueller, J., Xie, Z., and Benenson, Y. (2010) Rationally designed logic integration of regulatory signals in mammalian cells, Nature Nanotechnology 5, 666–670.

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro, E., and Benenson, Y. (2006) Bringing DNA computers to life, Scientific American 294, 44–51.

    Article  PubMed  CAS  Google Scholar 

  17. Baker, D., Group, B. F., Church, G., Collins, J., Endy, D., Jacobson, J., Keasling, J., Modrich, P., Smolke, C., and Weiss, R. (2006) Engineering life: Building a fab for biology, Scientific American 294, 44–51.

    Google Scholar 

  18. Benenson, Y. (2011) Engineering RNAi circuits, Methods in Enzymology 497, 187-205.

    PubMed  CAS  Google Scholar 

  19. Chang, K., Elledge, S. J., and Hannon, G. J. (2006) Lessons from Nature: microRNA-based shRNA libraries, Nature Methods 3, 707–714.

    Article  PubMed  CAS  Google Scholar 

  20. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J., and Elledge, S. J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells, Proceedings of the National Academy of Sciences of the United States of America 102, 13212–13217.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, Z. L., Xie, Z., Zou, X. L., Casaretto, J., Ho, T. H. D., and Shen, Q. X. J. (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells, Plant Physiology 134, 1500–1513.

    Article  PubMed  CAS  Google Scholar 

  22. Wagner, E. J., Baines, A., Albrecht, T., Brazas, R. M., and Garcia-Blanco, M. A. (2004) Imaging alternative splicing in living cells, Methods in Molecular Biology, 29–46.

    Google Scholar 

  23. Shu, X. K., Royant, A., Lin, M. Z., Aguilera, T. A., Lev-Ram, V., Steinbach, P. A., and Tsien, R. Y. (2009) Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome, Science 324, 804–807.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov Benenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Leisner, M., Bleris, L., Lohmueller, J., Xie, Z., Benenson, Y. (2012). MicroRNA Circuits for Transcriptional Logic. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics