Skip to main content

Mitochondrial Permeability Transition Pore and Calcium Handling

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 810))

Abstract

Opening of a large conductance channel in the inner mitochondrial membrane, known as the mitochondrial permeability transition (MPT) pore, has been shown to be a primary mediator of cell death in the heart subjected to ischemia-reperfusion injury. Inhibitors of the MPT have been shown to reduce cardiac ischemia-reperfusion injury. Furthermore, most cardioprotective strategies appear to reduce ischemic cell death either by reducing the triggers for the opening of the MPT, such as reducing calcium overload or reactive oxygen species, or by more direct inhibition of the MPT. This chapter focuses on key issues in the study of the MPT and provides some methods for measuring MPT opening in isolated mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463–474

    PubMed  CAS  Google Scholar 

  2. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  3. McCormack JG, Denton RM (1980) Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J 190:95–105

    PubMed  CAS  Google Scholar 

  4. Denton RM, McCormack JG, Edgell NJ (1980) Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J 190:107–117

    PubMed  CAS  Google Scholar 

  5. Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467

    Article  PubMed  CAS  Google Scholar 

  6. Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    Article  PubMed  CAS  Google Scholar 

  7. Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195:468–477

    Article  PubMed  CAS  Google Scholar 

  8. Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469

    Article  PubMed  CAS  Google Scholar 

  9. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  PubMed  CAS  Google Scholar 

  10. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    Article  PubMed  CAS  Google Scholar 

  11. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  PubMed  CAS  Google Scholar 

  12. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  PubMed  CAS  Google Scholar 

  13. Leung AW, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777:946–952

    Article  PubMed  CAS  Google Scholar 

  14. Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323

    Article  PubMed  CAS  Google Scholar 

  15. Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734

    Article  PubMed  CAS  Google Scholar 

  16. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    PubMed  CAS  Google Scholar 

  17. Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138

    Article  PubMed  CAS  Google Scholar 

  18. Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153

    Article  PubMed  CAS  Google Scholar 

  19. Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J 20:4998–5007

    Article  PubMed  CAS  Google Scholar 

  20. Bell CJ, Bright NA, Rutter GA, Griffiths EJ (2006) ATP regulation in adult rat cardiomyocytes: time-resolved decoding of rapid mitochondrial calcium spiking imaged with targeted photoproteins. J Biol Chem 281:28058–28067

    Article  PubMed  CAS  Google Scholar 

  21. Miyamae M, Camacho SA, Weiner MW, Figueredo VM (1996) Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol 271:H2145–H2153

    PubMed  CAS  Google Scholar 

  22. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  PubMed  CAS  Google Scholar 

  23. Inserte J, Barba I, Hernando V, Abellan A, Ruiz-Meana M, Rodriguez-Sinovas A (2008) Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Cardiovasc Res 77:782–790

    Article  PubMed  CAS  Google Scholar 

  24. Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903

    Article  PubMed  Google Scholar 

  25. Murphy E, Perlman M, London RE, Steenbergen C (1991) Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68:1250–1258

    PubMed  CAS  Google Scholar 

  26. Steenbergen C, Perlman ME, London RE, Murphy E (1993) Mechanism of preconditioning. Ionic alterations. Circ Res 72:112–125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wong, R., Steenbergen, C., Murphy, E. (2012). Mitochondrial Permeability Transition Pore and Calcium Handling. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 810. Humana Press. https://doi.org/10.1007/978-1-61779-382-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-382-0_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-381-3

  • Online ISBN: 978-1-61779-382-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics