Skip to main content

Identifying Cellular Targets of Small-Molecule Probes and Drugs with Biochemical Enrichment and SILAC

  • Protocol
  • First Online:
Chemical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 803))

Abstract

Sequencing of the human genome in the last decade has not yet led to a concomitant increase in the numbers of novel drug targets. While the pharmaceutical industry has invested heavily in improving drugs for existing protein targets, it has not tended toward a similar investment in experimental approaches to identify cellular targets of drugs. It is striking that the targets of numerous widely used FDA-approved drugs remain unknown. The development of robust, unbiased methods for target identification would greatly enhance our understanding the mechanisms-of-action of small molecules. Cell-based phenotypic screens followed by unbiased target identification have the potential to identify novel combinations of small molecules and their protein targets, shed light on drug polypharmacology, and enable unbiased screening approaches to drug discovery. Classical biochemical enrichment with immobilized small molecules has been used for over four decades but has been limited by issues concerning specificity and sensitivity. The application of mass spectrometry-based quantitative proteomics in combination with these affinity reagents has proven to be especially useful in addressing these common issues in affinity purification experiments. We describe the use of SILAC in identifying proteins that bind small-molecule probes and drugs in a cellular context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gamo, F. J., Sanz, L. M., Vidal, J., de Cozar, C., Alvarez, E., Lavandera, J. L., Vanderwall, D. E., Green, D. V., Kumar, V., Hasan, S., Brown, J. R., Peishoff, C. E., Cardon, L. R., and Garcia-Bustos, J. F. Thousands of chemical starting points for antimalarial lead identification, Nature 465, 305–310.

    Google Scholar 

  2. Guiguemde, W. A., Shelat, A. A., Bouck, D., Duffy, S., Crowther, G. J., Davis, P. H., Smithson, D. C., Connelly, M., Clark, J., Zhu, F., Jimenez-Diaz, M. B., Martinez, M. S., Wilson, E. B., Tripathi, A. K., Gut, J., Sharlow, E. R., Bathurst, I., El Mazouni, F., Fowble, J. W., Forquer, I., McGinley, P. L., Castro, S., Angulo-Barturen, I., Ferrer, S., Rosenthal, P. J., Derisi, J. L., Sullivan, D. J., Lazo, J. S., Roos, D. S., Riscoe, M. K., Phillips, M. A., Rathod, P. K., Van Voorhis, W. C., Avery, V. M., and Guy, R. K. Chemical genetics of Plasmodium falciparum, Nature 465, 311–315.

    Google Scholar 

  3. Stockwell, B. R. (2004) Exploring biology with small organic molecules, Nature 432, 846–854.

    Article  PubMed  CAS  Google Scholar 

  4. Stanton, B. Z., Peng, L. F., Maloof, N., Nakai, K., Wang, X., Duffner, J. L., Taveras, K. M., Hyman, J. M., Lee, S. W., Koehler, A. N., Chen, J. K., Fox, J. L., Mandinova, A., and Schreiber, S. L. (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells, Nat Chem Biol 5, 154–156.

    Article  PubMed  CAS  Google Scholar 

  5. Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., and Melton, D. A. (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds, Nat Biotechnol 26, 795–797.

    Article  PubMed  CAS  Google Scholar 

  6. Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., Loh, K. M., Carter, A. C., Di Giorgio, F. P., Koszka, K., Huangfu, D., Akutsu, H., Liu, D. R., Rubin, L. L., and Eggan, K. (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog, Cell Stem Cell 5, 491–503.

    Article  PubMed  CAS  Google Scholar 

  7. Rix, U., and Superti-Furga, G. (2009) Target profiling of small molecules by chemical proteomics, Nat Chem Biol 5, 616–624.

    Article  PubMed  CAS  Google Scholar 

  8. Terstappen, G. C., Schlupen, C., Raggiaschi, R., and Gaviraghi, G. (2007) Target deconvolution strategies in drug discovery, Nat Rev Drug Discov 6, 891–903.

    Article  PubMed  CAS  Google Scholar 

  9. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol Cell Proteomics 1, 376–386.

    Article  CAS  Google Scholar 

  10. Ong, S. E., Schenone, M., Margolin, A. A., Li, X., Do, K., Doud, M. K., Mani, D. R., Kuai, L., Wang, X., Wood, J. L., Tolliday, N. J., Koehler, A. N., Marcaurelle, L. A., Golub, T. R., Gould, R. J., Schreiber, S. L., and Carr, S. A. (2009) Identifying the proteins to which small-molecule probes and drugs bind in cells, Proc Natl Acad Sci USA 106, 4617–4622.

    Article  PubMed  CAS  Google Scholar 

  11. Ong, S. E., and Mann, M. (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC), Nat Protoc 1, 2650–2660.

    Article  PubMed  CAS  Google Scholar 

  12. Ong, S. E., and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative, Nat Chem Biol 1, 252–262.

    Article  PubMed  CAS  Google Scholar 

  13. Domon, B., and Aebersold, R. (2006) Mass spectrometry and protein analysis, Science 312, 212–217.

    Article  PubMed  CAS  Google Scholar 

  14. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol 26, 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  15. Mortensen, P., Gouw, J. W., Olsen, J. V., Ong, S. E., Rigbolt, K. T., Bunkenborg, J., Cox, J., Foster, L., Heck, A. J., Blagoev, B., Andersen, J. S., and Mann, M. (2009) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics, J Proteome Res. 9(1):393–403.

    Article  Google Scholar 

  16. Cuatrecasas, P. (1970) Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads, J Biol Chem 245, 3059–3065.

    CAS  Google Scholar 

  17. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat Protoc 1, 2856–2860.

    Article  PubMed  CAS  Google Scholar 

  18. Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat Protoc 2, 1896–1906.

    Article  PubMed  CAS  Google Scholar 

  19. Cox, J., Matic, I., Hilger, M., Nagaraj, N., Selbach, M., Olsen, J. V., and Mann, M. (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics, Nat Protoc 4, 698–705.

    Article  PubMed  CAS  Google Scholar 

  20. Margolin, A. A., Ong, S. E., Schenone, M., Gould, R., Schreiber, S. L., Carr, S. A., and Golub, T. R. (2009) Empirical bayes analysis of quantitative proteomics experiments, PLoS One 4, e7454.

    Article  PubMed  Google Scholar 

  21. Ting, L., Cowley, M. J., Hoon, S. L., Guilhaus, M., Raftery, M. J., and Cavicchioli, R. (2009) Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling, Mol Cell Proteomics 8, 2227–2242.

    Article  PubMed  CAS  Google Scholar 

  22. Jiang, H., and English, A. M. (2002) Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine, J Proteome Res 1, 345–350.

    Article  PubMed  CAS  Google Scholar 

  23. Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R., and Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function, Cell 134, 353–364.

    Article  PubMed  Google Scholar 

  24. Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics, Nat Biotechnol 22, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  25. Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13 C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC), J Proteome Res 2, 173–181.

    Article  PubMed  CAS  Google Scholar 

  26. Bendall, S. C., Hughes, C., Stewart, M. H., Doble, B., Bhatia, M., and Lajoie, G. A. (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells, Mol Cell Proteomics 7, 1587–1597.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the helpful discussions and useful insights of our colleagues in the Chemical Biology Program, Chemical Biology Platform, and Proteomics Platform at the Broad Institute. This research has been funded in part with Federal funds from the National Cancer Institute’s Initiative for Chemical Genetics (Contract No. N01-CO-12400) as well as the NIH grant for Genomics Based Drug Discovery – Target ID project (NIH RL1HG004671), administratively linked to RL1CA133834, RL1GM084437, and UL1RR024924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-En Ong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ong, SE., Li, X., Schenone, M., Schreiber, S.L., Carr, S.A. (2012). Identifying Cellular Targets of Small-Molecule Probes and Drugs with Biochemical Enrichment and SILAC. In: Drewes, G., Bantscheff, M. (eds) Chemical Proteomics. Methods in Molecular Biology, vol 803. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-364-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-364-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-363-9

  • Online ISBN: 978-1-61779-364-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics