Skip to main content

Acquisition, Preparation, and Functional Assessment of Human NK Cells for Adoptive Immunotherapy

  • Protocol
  • First Online:
Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 651))

Abstract

Human natural killer (NK) cells, a subset of peripheral blood lymphocytes that lack a T- or B-cell receptor, play a crucial role in the innate immune response to viruses and malignant cells. NK cells differentiate infected or malignant cells from normal cells by a complex balance between activating and inhibitory receptor–ligand interactions. Unlike T cells, NK cells do not proliferate in vitro in response to simple crosslinking of a single activating receptor. While many methods to study T-cell function and phenotype can also be applied to NK cells, this chapter addresses methods that are unique to the preparation and assessment of human NK cells for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiessling, R., Klein, E., and Wigzell, H. (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5, 112–117.

    Article  PubMed  CAS  Google Scholar 

  2. Farag, S. S., Fehniger, T. A., Ruggeri, L., Velardi, A., and Caligiuri, M. A. (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100, 1935–1947.

    Article  PubMed  CAS  Google Scholar 

  3. Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M. C., Biassoni, R., and Moretta, L. (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19, 197–223.

    Article  PubMed  CAS  Google Scholar 

  4. Raulet, D. H., and Held, W. (1995) Natural killer cell receptors: the offs and ons of NK cell recognition. Cell 82, 697–700.

    Article  PubMed  CAS  Google Scholar 

  5. Lanier, L. L. (2005) NK cell recognition. Annu Rev Immunol 23, 225–274.

    Article  PubMed  CAS  Google Scholar 

  6. Phillips, J. H., and Lanier, L. L. (1986) Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 164, 814–825.

    Article  PubMed  CAS  Google Scholar 

  7. Grimm, E. A., Mazumder, A., Zhang, H. Z., and Rosenberg, S. A. (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155, 1823–1841.

    Article  PubMed  CAS  Google Scholar 

  8. Benyunes, M. C., Massumoto, C., York, A., Higuchi, C. M., Buckner, C. D., Thompson, J. A., Petersen, F. B., and Fefer, A. (1993) Interleukin-2 with or without lymphokine-activated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant 12, 159–163.

    PubMed  CAS  Google Scholar 

  9. Leemhuis, T., Wells, S., Scheffold, C., Edinger, M., and Negrin, R. S. (2005) A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant 11, 181–187.

    Article  PubMed  Google Scholar 

  10. Miller, J. S., Soignier, Y., Panoskaltsis-Mortari, A., McNearney, S. A., Yun, G. H., Fautsch, S. K., McKenna, D., Le, C., Defor, T. E., Burns, L. J., Orchard, P. J., Blazar, B. R., Wagner, J. E., Slungaard, A., Weisdorf, D. J., Okazaki, I. J., and McGlave, P. B. (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057.

    Article  PubMed  CAS  Google Scholar 

  11. Grzywacz, B., Miller, J. S., and Verneris, M. R. (2008) Use of natural killer cells as immunotherapy for leukaemia. Best Pract Res Clin Haematol 21, 467–483.

    Article  PubMed  CAS  Google Scholar 

  12. Larghero, J., Rocha, V., Porcher, R., Filion, A., Ternaux, B., Lacassagne, M. N., Robin, M., Peffault de Latour, R., Devergie, A., Biscay, N., Ribaud, P., Benbunan, M., Gluckman, E., Marolleau, J. P., and Socie, G. (2007) Association of bone marrow natural killer cell dose with neutrophil recovery and chronic graft-versus-host disease after HLA identical sibling bone marrow transplants. Br J Haematol 138, 101–109.

    Article  PubMed  Google Scholar 

  13. Kim, D. H., Won, D. I., Lee, N. Y., Sohn, S. K., Suh, J. S., and Lee, K. B. (2006) Non-CD34+ cells, especially CD8+ cytotoxic T cells and CD56+ natural killer cells, rather than CD34 cells, predict early engraftment and better transplantation outcomes in patients with hematologic malignancies after allogeneic peripheral stem cell transplantation. Biol Blood Marrow Transplant 12, 719–728.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, D. H., Sohn, S. K., Lee, N. Y., Baek, J. H., Kim, J. G., Won, D. I., Suh, J. S., Lee, K. B., and Shin, I. H. (2005) Transplantation with higher dose of natural killer cells associated with better outcomes in terms of non-relapse mortality and infectious events after allogeneic peripheral blood stem cell transplantation from HLA-matched sibling donors. Eur J Haematol 75, 299–308.

    Article  PubMed  Google Scholar 

  15. Yamasaki, S., Henzan, H., Ohno, Y., Yamanaka, T., Iino, T., Itou, Y., Kuroiwa, M., Maeda, M., Kawano, N., Kinukawa, N., Miyamoto, T., Nagafuji, K., Shimoda, K., Inaba, S., Hayashi, S., Taniguchi, S., Shibuya, T., Gondo, H., Otsuka, T., and Harada, M. (2003) Influence of transplanted dose of CD56+ cells on development of graft-versus-host disease in patients receiving G-CSF-mobilized peripheral blood progenitor cells from HLA-identical sibling donors. Bone Marrow Transplant 32, 505–510.

    Article  PubMed  CAS  Google Scholar 

  16. Savani, B. N., Mielke, S., Adams, S., Uribe, M., Rezvani, K., Yong, A. S., Zeilah, J., Kurlander, R., Srinivasan, R., Childs, R., Hensel, N., and Barrett, A. J. (2007) Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia 21, 2145–2152.

    Article  PubMed  CAS  Google Scholar 

  17. Miller, J. S., Oelkers, S., Verfaillie, C., and McGlave, P. (1992) Role of monocytes in the expansion of human activated natural killer cells. Blood 80, 2221–2229.

    PubMed  CAS  Google Scholar 

  18. Perussia, B., Ramoni, C., Anegon, I., Cuturi, M. C., Faust, J., and Trinchieri, G. (1987) Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul 6, 171–188.

    PubMed  CAS  Google Scholar 

  19. Robertson, M. J., Cameron, C., Lazo, S., Cochran, K. J., Voss, S. D., and Ritz, J. (1996) Costimulation of human natural killer cell proliferation: role of accessory cytokines and cell contact-dependent signals. Nat Immun 15, 213–226.

    PubMed  CAS  Google Scholar 

  20. Carson, W. E., Fehniger, T. A., Haldar, S., Eckhert, K., Lindemann, M. J., Lai, C. F., Croce, C. M., Baumann, H., and Caligiuri, M. A. (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99, 937–943.

    Article  PubMed  CAS  Google Scholar 

  21. Koehl, U., Esser, R., Zimmermann, S., Tonn, T., Kotchetkov, R., Bartling, T., Sorensen, J., Gruttner, H. P., Bader, P., Seifried, E., Martin, H., Lang, P., Passweg, J. R., Klingebiel, T., and Schwabe, D. (2005) Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children. Klinische Padiatrie 217, 345–350.

    Article  PubMed  CAS  Google Scholar 

  22. Klingemann, H. G., and Martinson, J. (2004) Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 6, 15–22.

    Article  PubMed  Google Scholar 

  23. Ayello, J., van de Ven, C., Fortino, W., Wade-Harris, C., Satwani, P., Baxi, L., Simpson, L. L., Sanger, W., Pickering, D., Kurtzberg, J., and Cairo, M. S. (2006) Characterization of cord blood natural killer and lymphokine activated killer lymphocytes following ex vivo cellular engineering. Biol Blood Marrow Transplant 12, 608–622.

    Article  PubMed  CAS  Google Scholar 

  24. Carlens, S., Gilljam, M., Chambers, B. J., Aschan, J., Guven, H., Ljunggren, H. G., Christensson, B., and Dilber, M. S. (2001) A new method for in vitro expansion of cytotoxic human CD3-CD56+ natural killer cells. Hum Immunol 62, 1092–1098.

    Article  PubMed  CAS  Google Scholar 

  25. Boissel, L., Tuncer, H. H., Betancur, M., Wolfberg, A., and Klingemann, H. (2008) Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol Blood Marrow Transplant 14, 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  26. Berg, M., Lundqvist, A., McCoy, P., Jr., Samsel, L., Fan, Y., Tawab, A., and Childs, R. (2009) Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells, Cytotherapy 11, 341–355.

    Google Scholar 

  27. Fujisaki, H., Kakuda, H., Imai, C., Mullighan, C. G., and Campana, D. (2009) Replicative potential of human natural killer cells, Br J Haematol 145, 606–613.

    Google Scholar 

  28. Imai, C., Iwamoto, S., and Campana, D. (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106, 376–383.

    Article  PubMed  CAS  Google Scholar 

  29. Fujisaki, H., Kakuda, H., Shimasaki, N., Imai, C., Ma, J., Lockey, T., Eldridge, P., Leung, W. H., and Campana, D. (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy, Cancer Res 69, 4010–4017.

    Google Scholar 

  30. McKenna, D. H., Jr., Sumstad, D., Bostrom, N., Kadidlo, D. M., Fautsch, S., McNearney, S., Dewaard, R., McGlave, P. B., Weisdorf, D. J., Wagner, J. E., McCullough, J., and Miller, J. S. (2007) Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion 47, 520–528.

    Article  PubMed  CAS  Google Scholar 

  31. Lang, P., Pfeiffer, M., Handgretinger, R., Schumm, M., Demirdelen, B., Stanojevic, S., Klingebiel, T., Kohl, U., Kuci, S., and Niethammer, D. (2002) Clinical scale isolation of T cell-depleted CD56+ donor lymphocytes in children. Bone Marrow Transplant 29, 497–502.

    Article  PubMed  CAS  Google Scholar 

  32. Warren, H. S., and Rana, P. M. (2003) An economical adaptation of the RosetteSep procedure for NK cell enrichment from whole blood, and its use with liquid nitrogen stored peripheral blood mononuclear cells. J Immunol Methods 280, 135–138.

    Article  PubMed  CAS  Google Scholar 

  33. Lichtenfels, R., Biddison, W. E., Schulz, H., Vogt, A. B., and Martin, R. (1994) CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J Immunol Methods 172, 227–239.

    Article  PubMed  CAS  Google Scholar 

  34. Cholujova, D., Jakubikova, J., Kubes, M., Arendacka, B., Sapak, M., Robert, I., and Sedlak, J. (2008) Comparative study of four fluorescent probes for evaluation of natural killer cell cytotoxicity assays. Immunobiology 213, 629–640.

    Article  PubMed  CAS  Google Scholar 

  35. Roden, M. M., Lee, K. H., Panelli, M. C., and Marincola, F. M. (1999) A novel cytolysis assay using fluorescent labeling and quantitative fluorescent scanning technology. J Immunol Methods 226, 29–41.

    Article  PubMed  CAS  Google Scholar 

  36. Neri, S., Mariani, E., Meneghetti, A., Cattini, L., and Facchini, A. (2001) Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 8, 1131–1135.

    PubMed  CAS  Google Scholar 

  37. Grzywacz, B., Kataria, N., and Verneris, M. R. (2007) CD56(dim)CD16(+) NK cells downregulate CD16 following target cell induced activation of matrix metalloproteinases. Leukemia 21, 356–359; author reply 359.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, D.A., Verneris, M.R., Campana, D. (2010). Acquisition, Preparation, and Functional Assessment of Human NK Cells for Adoptive Immunotherapy. In: Yotnda, P. (eds) Immunotherapy of Cancer. Methods in Molecular Biology, vol 651. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-786-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-786-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-785-3

  • Online ISBN: 978-1-60761-786-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics