Skip to main content

The Toxicity of Mixtures of Specific Organophosphate Compounds is Modulated by Paraoxonase 1 Status

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 660))

Abstract

Most chemical exposures involve complex mixtures. The role of paraoxonase 1 (PON1) and the Q192R polymorphism in the detoxication of individual organophosphorous (OP) compounds has been well-established. The extent to which PON1 protects against a given OP is determined by its catalytic efficiency. We used a humanized transgenic mouse model of the Q192R polymorphism to demonstrate that PON1 modulates the toxicity of OP mixtures by altering the activity of another detoxication enzyme, carboxylesterase (CaE). Chlorpyrifos oxon (CPO), diazoxon (DZO), and paraoxon (PO) are potent inhibitors of CaE, both in vitro and in vivo. We hypothesized that exposure of mice to these OPs would increase their sensitivity to the CaE substrate, malaoxon (MO), and that the degree of effect would vary among PON1 genotypes if the OP was a physiologically relevant PON1 substrate. When wild-type mice were exposed dermally to CPO, DZO, or PO and then, after 4 h, to different doses of MO, the toxicity of MO was increased compared to mice that received MO alone. The potentiation of MO toxicity by CPO and DZO was higher in PON1 knockout mice, which are less able to detoxify CPO or DZO. Potentiation by CPO was higher in Q192 mice than in R192 mice due to the decreased ability of PON1Q192 to detoxify CPO. Potentiation by DZO was similar in the Q192 and R192 mice, due to their equivalent effectiveness at detoxifying DZO. PO exposure resulted in equivalent potentiation of MO toxicity among all four genotypes. These results indicate that PON1 status modulates the ability of CaE to detoxicate OP compounds from specific mixed insecticide exposures. PON1 status can also impact the capacity to metabolize drugs or other CaE substrates following insecticide exposure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abernathy CO, Casida JE (1973) Pyrethroid insecticides: esterase cleavage in relation to selective toxicity. Science 179:1235–1236

    Article  CAS  PubMed  Google Scholar 

  • Adkins S, Gan KN, Mody M, La Du BN (1993) Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am J Hum Genet 53:598–608

    Google Scholar 

  • Aldridge WN (1954) Tricresyl phosphates and cholinesterase. Biochem J 56:185–189

    CAS  PubMed  Google Scholar 

  • Buratti FM, Testai E (2005) Malathion detoxication by human hepatic carboxylesterase and its inhibition by isomalathion and other pesticides. J Biochem Mol Toxicol 19:406–414

    Article  CAS  PubMed  Google Scholar 

  • Casida JE, Eto M, Baron RL (1961) Biological activity of a tri-o-cresyl phosphate metabolite. Nature 191:1396–1397

    Article  CAS  PubMed  Google Scholar 

  • Casida JE, Baron RL, Eto M, Engel JL (1963) Potentiation and neurotoxicity induced by certain organophosphates. Biochem Pharmacol 12:73–83

    Article  CAS  PubMed  Google Scholar 

  • Chambers HW, Brown B, Chambers JE (1990) Noncatalytic detoxication of six organophosphorus compounds by rat liver homogenates. Pestic Biochem Physiol 36:308–315

    Article  CAS  Google Scholar 

  • Chambers JE, Ma T, Boone JS, Chambers HW (1994) Role of detoxication pathways in acute toxicity levels of phosphorothionate insecticides in the rat. Life Sci 54:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Chen PR, Tucker WP, Dauterman WC (1969) Structure of biologically produced malathion monoacid. J Agr Food Chem 17:86–90

    Article  CAS  Google Scholar 

  • Choi J, Hodgson E, Rose RL (2004) Inhibition of transpermethrin hydrolysis in human liver fractions by chloropyrifos oxon and carbaryl. Drug Metabol Drug Interact 20:233–246

    CAS  PubMed  Google Scholar 

  • Cohen SD, Murphy SD (1971a) Malathion potentiation and inhibition of hydrolysis of various carboxylic esters by triorthotolyl phosphate (TOTP) in mice. Biochem Pharmacol 20:575–587

    Article  CAS  PubMed  Google Scholar 

  • Cohen SD, Murphy SD (1971b) Carboxylesterase inhibition as an indicator of malathion potentiation in mice. J Pharmacol Exp Ther 176:733–742

    CAS  PubMed  Google Scholar 

  • Cohen SD, Callaghan JE, Murphy SD (1972) Investigation of multiple mechanisms for potentiation of malaoxon’s anticholinesterase action by triorthotolyl phosphate. Proc Soc Exp Biol Med 141:906–910

    CAS  PubMed  Google Scholar 

  • Cole TB, Jampsa RL, Walter BJ, Arndt TA, Richter RJ, Shih DM, Tward A, Lusis AJ, Jack RM, Costa LG, Furlong CE (2003) Expression of human paraoxonase (PON1) during development. Pharmacogenetics 13:357–364

    Article  CAS  PubMed  Google Scholar 

  • Cole TB, Walter BJ, Shih DM, Tward AD, Lusis AJ, Timchalk C, Richter RJ, Costa LG (2005) Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism. Pharmacogenet Genomics 15:589–598.

    Article  CAS  PubMed  Google Scholar 

  • Cook JW, Blake JR, Williams MW(1957) Paraoxonase 1 (PON1) modulates the toxicity of mixed organophosphorus compounds. J Assess Office Agr Chem 40:664

    CAS  Google Scholar 

  • Cook JW, Yip G (1958) Malathionase. II. Identity of a malathion metabolite. J Assess Office Agr Chem 41:407–411

    CAS  Google Scholar 

  • Costa LG, McDonald BE, Murphy SD, Omenn GS, Richter RJ, Motulsky AG, Furlong CE (1990) Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats. Toxicol Appl Pharmacol 103:66–76

    Article  CAS  PubMed  Google Scholar 

  • Costa LG, Li W-F, Richter RJ, Shih DM, Lusis AJ, Furlong CE (1999) The role of paraoxonase (PON1) in the detoxication of organophosphates and its human polymorphism. Chem Biol Interact 119–120:429–438

    Google Scholar 

  • Costa LG (2006) Current issues in organophosphate toxicology. Clin Chim Acta 366:1–13

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Richter RJ, Kiefer M, Broomfield C, Sowalla J, Furlong CE (1996) The human serum paraoxonase polymorphism is reversed with diazinon, soman and sarin. Nat Genet 14:334–336.

    Article  CAS  PubMed  Google Scholar 

  • DuBois KP, Doull J, Deroin J, Cumming OR (1953) Studies on the toxicity and mechanism of action of some new insecticidal thionophosphates. Arch Ind Hyg Occup Med 8:350–358

    CAS  Google Scholar 

  • DuBois KP (1958) Potentiation of toxicity of insecticidal organophosphates. Arch Industr Health 18:488–496

    CAS  Google Scholar 

  • DuBois KP (1969) Combined effects of pesticides. Canad Med Assoc J 100:173–179

    CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres VJ, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Eskenazi B, Rosas LG, Marks AR, Bradman A, Harley K, Holland N, Johnson C, Fenster L, Barr DB (2008) Pesticide toxicity and the developing brain. Basic Clin Pharmacol Toxicol 102:228–236

    Article  CAS  PubMed  Google Scholar 

  • Fenske RA, Lu C, Curl CL, Shirai JH, Kissel JC (2005) Biologic monitoring to characterize organophosphorus pesticide exposure among children and workers: an analysis of recent studies in Washington State. Environ Health Perspect 113:1651–1657

    Article  CAS  PubMed  Google Scholar 

  • Furlong CE, Richter RJ, Seidel SL, Costa LG, Motulsky AG (1989) Spectrophotometric assays fro the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase. Anal Biochem 180:242–247

    Article  CAS  PubMed  Google Scholar 

  • Furlong CE, Costa LG, Hassett C, Richter RJ, Sundstrom JA, Adler DA, Disteche CM, Omiecinski CJ, Chapline C, Crabb JW (1993) Human and rabbit paraoxonases: purification, cloning, sequencing, mapping and role of polymorphism in organophosphate detoxification. Chem Biol Interact 87:35–48

    Article  CAS  PubMed  Google Scholar 

  • Furlong CE, Holland N, Richter RJ, Bradman A, Ho A, Eskenazi B (2006) PON1 status of farmworker mothers and children as a predictor of organophosphate sensitivity. Pharmacogenet Genomics 16:183–190

    CAS  PubMed  Google Scholar 

  • Furlong CE (2007) Genetic variability in the cytochrome P450-paraoxonase 1 (PON1) pathway for detoxication of organophosphorus compounds. J Biochem Mol Toxicol 21:197–205

    Article  CAS  PubMed  Google Scholar 

  • Furlong CE, Richter RJ, Li W-F, Brophy VH, Carlson C, Meider M, Nickerson D, Costa LG, Ranchalis J, Lusis AJ, Shih DM, Tward A, Jarvik GP (2008) The functional consequences of polymorphisms in the human PON1 gene. In: Mackness B, Mackness M, Aviram M, Paragh G (Eds). The Paraoxonases: Their Role in Disease, Development and Xenobiotic Metabolism. Dordrecht, The Netherlands: Springer, pp. 267–281

    Google Scholar 

  • Gaughan LC, Engel JL, Casida JE (1980) Pesticide interactions: effects of organophosphorus pesticides on the metabolism, toxicity, and persistence of selected pyrethroid insecticides. Pestic Biochem Physiol 14:81–85

    Article  CAS  Google Scholar 

  • Godin SJ, Crow JA, Scollon EJ, Hughes MF, DeVito MJ, Ross MK (2007) Identification of rat and human cytochrome P450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides Deltamethrin and Esfenvalerate. Drug Metab Dispos 35:1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Hassett C, Richter RJ, Humbert R, Chapline C, Crabb JW, Omiecinski CJ, Furlong CE (1991) Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence. Biochemistry 30:10141–10149

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa M, Endo T, Fujisawa M, Hara S, Iwata N, Sato Y, Satoh T (1995) Interindividual variation in carboxylesterase levels in human liver microsomes. Drug Metab Dispos 23:1022–1027

    CAS  PubMed  Google Scholar 

  • Huen K, Richter R, Furlong C, Eskenazi B, Holland N (2009) Validation of PON1 enzyme activity assays for longitudinal studies. Clin Chim Acta 402(1–2):67–74

    Google Scholar 

  • Humbert R, Adler DA, Disteche CM, Hassett C, Omiecinski CJ, Furlong CE (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3:73–76

    Article  CAS  PubMed  Google Scholar 

  • Jansen KL, Cole TB, Park S, Furlong CE, Costa LG (2009) Paraoxonase 1 (PON1) modulates the toxicity of mixed organophosphorus compounds. Toxicol Appl Pharmacol 236(2):142–153

    Google Scholar 

  • Jarvik GP, Jampsa R, Richter RJ, Carlson CS, Rieder MJ, Nickerson DA, Furlong CE (2003) Novel paraoxonase (PON1) nonsense and missense mutations predicted by functional genomic assay of PON1 status. Pharmacogenetics 13:291–295

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Costa LG, Furlong CE (1993) Serum paraoxonase status: a major factor in determining resistance to organophosphates. J Toxicol Environ Health 40:337–346

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Furlong CE, Costa LG (1995) Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicol Lett 76:219–226

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Costa LG, Richter RJ, Hagen T, Shih DM, Tward A, Lusis AJ, Furlong CE (2000) Catalytic efficiency determines the in vivo efficacy of PON1 for detoxifying organophosphates. Pharmacogenetics 10:767–799

    Article  CAS  PubMed  Google Scholar 

  • Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, Lockridge O (2005) Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol 70:1673–1684

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R (2006) Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect 114:260–263

    Article  CAS  PubMed  Google Scholar 

  • Main AR (1956) The role of A-esterase in the acute toxicity of paraoxon, TEPP and parathion. Can J Biochem Physiol 34:197–216

    CAS  PubMed  Google Scholar 

  • Main AR, Dauterman WC (1967) Kinetic for the inhibition of carboxylesterase by malaoxon. Can J Biochem 45:757–771

    Article  CAS  PubMed  Google Scholar 

  • March RB, Fukuto TR, Metcalf RL, Moxon MG (1956) Fate of P32 labelled malathion in the laying hen, white mouse and American cockroach. J Econ Entomol 49:185–195

    CAS  Google Scholar 

  • Moser VC, Casey M, Hamm A, Carter WH Jr, Simmons JE, Gennings C (2005) Neurotoxicological and statistical analyses of a mixture of five organophosphorus pesticides using a ray design. Toxicol Sci 86:101–115

    Article  CAS  PubMed  Google Scholar 

  • Moser VC, Simmons JE, Gennings C (2006) Neurotoxicological interactions of a five-pesticide mixture in preweanling rats. Toxicol Sci 92:235–245

    Article  CAS  PubMed  Google Scholar 

  • Munger JS, Shi GP, Mark EA, Chin DT, Gerard C, Chapman HA (1991) A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem 266:18832–18838

    CAS  PubMed  Google Scholar 

  • Murphy SD, DuBois KP (1957) Quantitative measurement of inhibition of the enzymatic detoxification of malathion by EPN (ethyl p-nitrophenyl thionobenzene phosphate). Proc Soc Exp Biol Med 96:813–818

    CAS  PubMed  Google Scholar 

  • Murphy SD, Anderson RL, DuBois KP (1959) Potentiation of toxicity of malathion by triorthotolyl phosphate. Proc Soc Exp Biol Med 100:483–487

    CAS  PubMed  Google Scholar 

  • O’Brien RD (1957) Properties and metabolism in the cockroach and mouse of malathion and malaoxon. J Econ Entomol 50:1159–1164

    Google Scholar 

  • Pond AL, Chambers HW, Coyne CP, Chambers JE (1998) Purification of two rat hepatic proteins with A-esterase activity toward chlorpyrifos-oxon and paraoxon. J Pharmacol Exp Ther 286:1404–1411

    CAS  PubMed  Google Scholar 

  • Ramakrishna N, Ramachandran BV (1978) Malathion A and B esterases of mouse liver—III: In vivo effect of parathion and related PNP-containing insecticides on esterase inhibition and potentiation of malathion toxicity. Biochem Pharmacol 27:2049–2054

    Article  CAS  PubMed  Google Scholar 

  • Richter RJ, Furlong CE (1999) Determination of paraoxonase (PON1) status requires more than genotyping. Pharmacogenetics 9:745–753

    Article  CAS  PubMed  Google Scholar 

  • Richter RJ, Jarvik GP, Furlong CE (2008) Determination of paraoxonase 1 status without the use of toxic organophosphate substrates. Circ Cardiovasc Genet 1:147–152

    Article  CAS  PubMed  Google Scholar 

  • Richter RJ, Jarvik GP, Furlong CE (2009) Paraoxonase 1 (PON1) status and substrate hydrolysis. Toxicol Appl Pharmacol 235(1):1–9

    Google Scholar 

  • Satoh T, Hosokawa M (2006) Structure, function and regulation of carboxylesterases. Chem Biol Interact 162:195–211

    Article  CAS  PubMed  Google Scholar 

  • Seume FW, O’Brien RD (1960) Potentiation of toxicity to insects and mice of phosphorothionates containing carboxyester and carboxyamide groups. Toxicol Appl Pharmacol 2:495–503

    Article  CAS  PubMed  Google Scholar 

  • Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S, Castellani LW, Furlong CE, Costa LG, Fogelman AM, Lusis AJ (1998) Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394:284–287

    Article  CAS  PubMed  Google Scholar 

  • Stevens RC, Suzuki SM, Cole TB, Park SS, Richter RJ, Furlong CE (2008) Engineered recombinant human paraoxonase 1 (rHuPON1) purified from Escherichia coli protects against organophosphate poisoning. Proc Natl Acad Sci USA 105:12780–12784

    Article  CAS  PubMed  Google Scholar 

  • Su MQ, Kinoshita FK, Frawley JP, DuBois KP (1971) Comparative inhibition of aliesterases and cholinesterase in rats fed eighteen organophosphorus insecticides. Toxicol Appl Pharmacol 20:241–249

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Cao Y, Rose RL, Brimfield AA, Dai D, Goldstein JA, Hodgson E (2001) Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse, and rat liver microsomes. Drug Metab Dispos 29:1201–1204

    CAS  PubMed  Google Scholar 

  • Tang J, Chambers JE (1999) Detoxication of paraoxon by rat liver homogenate and serum carboxylesterases and A-esterases. J Biochem Mol Toxicol 13:261–268

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C, Poet TS, Hinman MN, Busby AL, Kousba AA (2005) Pharmacokinetic and pharmacodynamic interaction for a binary mixture of chlorpyrifos and diazinon in the rat. Toxicol Appl Pharmacol 205:31–42

    Article  CAS  PubMed  Google Scholar 

  • US Environmental Protection Agency (1999) Policy on a Common Mechanism of Action: The Organophosphate Pesticides. Fed Regist 64(24):5795–5799

    Google Scholar 

  • US Environmental Protection Agency (2002) Organophosphate pesticides: Revised OP cumulative risk assessment. http://www.epa.gov/pesticides/cumulative/rra-op/

  • US Environmental Protection Agency (2006) Organophosphorus Cumulative Risk Assessment- 2006 Update. Technical Executive Summary. US EPA Office of Pesticide Programs. http://www.epa.gov/oppsrrd1/cumulative/2006-op/

  • Verschoyle RD, Reiner E, Bailey E, Aldridge WN (1982) Dimethylphosphorothioates. Reaction with malathion and effect on malathion toxicity. Arch Toxicol 49:293–301

    Article  CAS  PubMed  Google Scholar 

  • Wheelock CE, Eder KJ, Werner I, Huang H, Jones PD, Brammell BF, Elskus AA, Hammock BD (2005) Individual variability in esterase acticity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquat Toxicol 74:172–192

    Article  CAS  PubMed  Google Scholar 

  • Williams FM, Mutch EM, Nicholson E, Wynne E, Wright P, Lambert D, Rawlins MD (1989) Human liver and plasma aspirin esterase. J Pharm Pharmacol 41:407–409

    CAS  PubMed  Google Scholar 

  • Winder C, Balouet JC (2002) The toxicity of commercial jet oils. Environ Res 89:146–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Diana Shih, Aldons J. Lusis, and Aaron Tward for providing the PON1 –/– mice and the hPON1 Q192 and hPON1 R192 transgenic mice used in this study. This work was supported by National Institutes of Health Grants ES09883, ES04696, ES07033, and ES09601/EPA: RD-83170901. Figures were reproduced from a previously published manuscript (Jansen et al. 2009), with permission from Elsevier Press.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement E. Furlong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Cole, T.B., Jansen, K., Park, S., Li, WF., Furlong, C.E., Costa, L.G. (2010). The Toxicity of Mixtures of Specific Organophosphate Compounds is Modulated by Paraoxonase 1 Status. In: Reddy, S. (eds) Paraoxonases in Inflammation, Infection, and Toxicology. Advances in Experimental Medicine and Biology, vol 660. Humana Press. https://doi.org/10.1007/978-1-60761-350-3_6

Download citation

Publish with us

Policies and ethics