Skip to main content

Wnt Signaling Mediates Diverse Developmental Processes in Zebrafish

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 469))

Abstract

A combination of forward and reverse genetic approaches in zebrafish has revealed novel roles for canonical Wnt and Wnt/PCP signaling during vertebrate development. Forward genetics in zebrafish provides an exceptionally powerful tool to assign roles in vertebrate developmental processes to novel genes, as well as elucidating novel roles played by known genes. This has indeed turned out to be the case for components of the canonical Wnt signaling pathway. Non-canonical Wnt signaling in the zebrafish is also currently a topic of great interest, due to the identified roles of this pathway in processes requiring the integration of cell polarity and cell movement, such as the directed migration movements that drive the narrowing and lengthening (convergence and extension) of the embryo during early development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Haubrick, L. L., Assmann, S. M. (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29, 446–457.

    PubMed  CAS  Google Scholar 

  2. Plickert, G., Jacoby, V., Frank, U., et al. (2006) Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning. Dev Biol 298, 368–378.

    PubMed  CAS  Google Scholar 

  3. Sansom, O. J., Reed, K. R., Hayes, A. J., et al. (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18, 1385–1390.

    PubMed  CAS  Google Scholar 

  4. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480.

    PubMed  CAS  Google Scholar 

  5. van Noort, M., Clevers, H. (2002) TCF transcription factors, mediators of Wntsignaling in development and cancer. Dev Biol 244, 1–8.

    PubMed  Google Scholar 

  6. van Noort, M., Meeldijk, J., van der Zee, R., et al. (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277, 17901–17905.

    PubMed  Google Scholar 

  7. Barker, N., Morin, P. J., Clevers, H. (2000) The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77, 1–24.

    PubMed  CAS  Google Scholar 

  8. Davidson, G., Wu, W., Shen, J., et al. (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872.

    PubMed  CAS  Google Scholar 

  9. Westfall, T. A., Brimeyer, R., Twedt, J.,et al. (2003) Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 162, 889–898.

    PubMed  CAS  Google Scholar 

  10. Park, M., Moon, R. T. (2002) The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat Cell Biol 4, 20–25.

    PubMed  CAS  Google Scholar 

  11. Veeman, M. T., Slusarski, D. C., Kaykas, A.,et al. (2003) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13, 680–685.

    PubMed  CAS  Google Scholar 

  12. Jopling, C., den Hertog, J. (2005) Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements. EMBO Rep 6, 426–431.

    PubMed  CAS  Google Scholar 

  13. Marlow, F., Topczewski, J., Sepich, D., et al. (2002) Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol 12, 876–884.

    PubMed  CAS  Google Scholar 

  14. Matsui, T., Raya, A., Kawakami, Y., et al. (2005) Noncanonical Wnt signaling regulates midline convergence of organ primor-dia during zebrafish development. Genes Dev 19, 164–175.

    PubMed  CAS  Google Scholar 

  15. Ulrich, F., Krieg, M., Schotz, E. M., et al. (2005) Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell 9, 555–564.

    PubMed  CAS  Google Scholar 

  16. Veeman, M. T., Axelrod, J. D., Moon, R. T. (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5, 367–377.

    PubMed  CAS  Google Scholar 

  17. Christoffels, A., Koh, E. G., Chia, J. M., et al. (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21, 1146–1151.

    PubMed  CAS  Google Scholar 

  18. Vandepoele, K., De Vos, W., Taylor, J. S., et al. (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101, 1638–1643.

    PubMed  CAS  Google Scholar 

  19. Crow, K. D., Stadler, P. F., Lynch, V. J., et al. (2006) The “ fish-specific ” Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23, 121–136.

    PubMed  CAS  Google Scholar 

  20. Hoegg, S., Brinkmann, H., Taylor, J. S., et al. (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59, 190–203.

    PubMed  CAS  Google Scholar 

  21. El-Messaoudi, S., Renucci, A. (2001) Expression pattern of the frizzled 7 gene during zebrafish embryonic development. Mech Dev 102, 231–234.

    PubMed  CAS  Google Scholar 

  22. Sumanas, S., Kim, H. J., Hermanson, S. B., et al. (2002) Lateral line, nervous system, and maternal expression of Frizzled 7a during zebrafish embryogenesis. Mech Dev 115, 107–111.

    PubMed  CAS  Google Scholar 

  23. Ungar, A. R., Calvey, C. R. (2002) Zebrafish frizzled7b is expressed in prechordal mesoderm, brain and paraxial mesoderm. Mech Dev 118, 165–169.

    PubMed  CAS  Google Scholar 

  24. Wharton, K. A., Jr. (2003) Runnin'with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 253, 1–17.

    PubMed  CAS  Google Scholar 

  25. Ober, E. A., Verkade, H., Field, H. A., et al. (2006) Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688–691.

    PubMed  CAS  Google Scholar 

  26. Field, H. A., Ober, E. A., Roeser, T., et al. (2003) Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253, 279–290.

    PubMed  CAS  Google Scholar 

  27. Thompson, M. D., Monga, S. P. (2007) WNT/beta-catenin signaling in liver health and disease. Hepatology 45, 1298–1305.

    PubMed  CAS  Google Scholar 

  28. Kim, C. H., Oda, T., Itoh, M., et al. (2000) Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913–916.

    PubMed  CAS  Google Scholar 

  29. Hsieh, J. C., Kodjabachian, L., Rebbert, M. L., et al. (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436.

    PubMed  CAS  Google Scholar 

  30. Kiecker, C., Niehrs, C. (2001) A morpho-gen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189–4201.

    PubMed  CAS  Google Scholar 

  31. Young, R. M., Reyes, A. E., Allende, M. L. (2002) Expression and splice variant analysis of the zebrafish tcf4 transcription factor. Mech Dev 117, 269–273.

    PubMed  CAS  Google Scholar 

  32. Heisenberg, C. P., Houart, C., Take-Uchi, M., et al. (2001) A mutation in the Gsk3binding domain of zebrafish Masterblind/ Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev 15, 1427–1434.

    PubMed  CAS  Google Scholar 

  33. Fan, L., Collodi, P. (2006) Zebrafish embryonic stem cells. Methods Enzymol 418, 64–77.

    PubMed  CAS  Google Scholar 

  34. McCallum, C. M., Comai, L., Greene, E. A., et al. (2000) Targeted screening for induced mutations. Nat Biotechnol 18, 455–457.

    PubMed  CAS  Google Scholar 

  35. Wienholds, E., van Eeden, F., Kosters, M., et al. (2003) Ef ficient target-selected mutagenesis in zebrafish. Genome Res 13, 2700–2707.

    PubMed  CAS  Google Scholar 

  36. Hurlstone, A. F., Haramis, A. P., Wienholds, E., et al. (2003) The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425, 633–637.

    PubMed  CAS  Google Scholar 

  37. Haramis, A. P., Hurlstone, A., van der Velden, Y., et al. (2006) Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep 7, 444–449.

    PubMed  CAS  Google Scholar 

  38. Sumanas, S., Ekker, S. C. (2001) Xenopus frizzled-7 morphant displays defects in dorsoventral patterning and convergent extension movements during gastrulation. Genesis 30, 119–122.

    PubMed  CAS  Google Scholar 

  39. Kilian, B., Mansukoski, H., Barbosa, F. C., et al. (2003) The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 120, 467–476.

    PubMed  CAS  Google Scholar 

  40. Waxman, J. S., Hocking, A. M., Stoick, C. L., et al. (2004) Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development 131, 5909–5921.

    PubMed  CAS  Google Scholar 

  41. Jessen, J. R., Topczewski, J., Bingham, S., et al. (2002) Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 4, 610–615.

    PubMed  CAS  Google Scholar 

  42. Carreira-Barbosa, F., Concha, M. L., Takeuchi, M., et al. (2003) Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 130, 4037–4046.

    PubMed  CAS  Google Scholar 

  43. Formstone, C. J., Mason, I. (2005) Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway. Dev Biol 282, 320–335.

    PubMed  CAS  Google Scholar 

  44. Topczewski, J., Sepich, D. S., Myers, D. C., et al. (2001) The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 1, 251–264.

    PubMed  CAS  Google Scholar 

  45. Moeller, H., Jenny, A., Schaeffer, H. J., et al. (2006) Diversin regulates heart formation and gastrulation movements in development. Proc Natl Acad Sci USA 103, 15900–15905.

    PubMed  CAS  Google Scholar 

  46. Rauch, G. J., Hammerschmidt, M., Blader, P., et al. (1997) Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol 62, 227–234.

    PubMed  CAS  Google Scholar 

  47. Heisenberg, C. P., Tada, M., Rauch, G. J., et al. (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81.

    PubMed  CAS  Google Scholar 

  48. Ungar, A. R., Kelly, G. M., Moon, R. T. (1995) Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mech Dev 52, 153–164.

    PubMed  CAS  Google Scholar 

  49. Hammerschmidt, M., Pelegri, F., Mull-ins, M. C., et al. (1996) Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 123, 143–151.

    PubMed  CAS  Google Scholar 

  50. Heisenberg, C. P., Nusslein-Volhard, C. (1997) The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev Biol 184, 85–94.

    PubMed  CAS  Google Scholar 

  51. Solnica-Krezel, L., Stemple, D. L., Mountcastle-Shah, E., et al. (1996) Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123, 67–80.

    PubMed  CAS  Google Scholar 

  52. Ekker, S. C. (2000) Morphants: a new systematic vertebrate functional genomics approach. Yeast 17, 302–306.

    PubMed  CAS  Google Scholar 

  53. Nasevicius, A., Ekker, S. C. (2000) Effective targeted gene‘knockdown’in zebrafish. Nat Genet 26, 216–220.

    PubMed  CAS  Google Scholar 

  54. Corey, D. R., Abrams, J. M. (2001) Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol 2.

    Google Scholar 

  55. Draper, B. W., Morcos, P. A., Kimmel, C. B. (2001) Inhibition of zebrafish fgf8 premRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30, 154–156.

    PubMed  CAS  Google Scholar 

  56. Sumanas, S., Larson, J. D. (2002) Morpholino phosphorodiamidate oligonucleotides in zebrafish: a recipe for functional genomics? Brief Funct Genomic Proteomic 1, 239–256.

    PubMed  CAS  Google Scholar 

  57. Wada, H., Tanaka, H., Nakayama, S., et al. (2006) Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain. Development. 133, 4749–4759.

    PubMed  Google Scholar 

  58. Marlow, F., Gonzalez, E. M., Yin, C., et al. (2004) No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish. Development 131, 203–216.

    PubMed  CAS  Google Scholar 

  59. Baeg, G. H., Lin, X., Khare, N., et al. (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94.

    PubMed  CAS  Google Scholar 

  60. Tsuda, M., Kamimura, K., Nakato, H., et al. (1999) The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280.

    PubMed  CAS  Google Scholar 

  61. Lin, X., Perrimon, N. (1999) Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284.

    PubMed  CAS  Google Scholar 

  62. Ulrich, F., Concha, M. L., Heid, P. J., et al. (2003) Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130, 5375–5384.

    PubMed  CAS  Google Scholar 

  63. Sepich, D. S., Myers, D. C., Short, R., et al. (2000) Role of the zebrafish trilobite locus in gastrulation movements of convergence and extension. Genesis 27, 159–173.

    PubMed  CAS  Google Scholar 

  64. Sumanas, S., Kim, H. J., Hermanson, S., et al. (2001) Zebrafish frizzled-2 morphant displays defects in body axis elongation. Genesis 30, 114–118.

    PubMed  CAS  Google Scholar 

  65. Klein, T. J., Mlodzik, M. (2005) Planar cell polarization: an emerging model points in the right direction. Annu Rev Cell Dev Biol 21, 155–176.

    PubMed  CAS  Google Scholar 

  66. Strutt, H., Price, M. A., Strutt, D. (2006) Planar polarity is positively regulated by casein kinase Iepsilon in Drosophila. Curr Biol 16, 1329–1336.

    PubMed  CAS  Google Scholar 

  67. Fanto, M., McNeill, H. (2004) Planar polarity from flies to vertebrates. J Cell Sci 117, 527–533.

    PubMed  CAS  Google Scholar 

  68. Sheldahl, L. C., Slusarski, D. C., Pandur, P., et al. (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 161, 769–777.

    PubMed  CAS  Google Scholar 

  69. Tada, M., Concha, M. L., Heisenberg, C. P. (2002) Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol 13, 251–260.

    PubMed  CAS  Google Scholar 

  70. Ciruna, B., Jenny, A., Lee, D., et al. (2006) Planar cell polarity signalling couples cell division and morphogenesis during neurula-tion. Nature 439, 220–224.

    PubMed  CAS  Google Scholar 

  71. Witzel, S., Zimyanin, V., Carreira-Barbosa, F., et al. (2006) Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J Cell Biol 175, 791–802.

    PubMed  CAS  Google Scholar 

  72. Strutt, H., Strutt, D. (2005) Long-range coordination of planar polarity in Dro-sophila. Bioessays 27, 1218–1227.

    PubMed  CAS  Google Scholar 

  73. Concha, M. L., Adams, R. J. (1998) Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development 125, 983–994.

    PubMed  CAS  Google Scholar 

  74. Zhu, S., Liu, L., Korzh, V., et al. (2006) RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension movements by involving effectors Rho kinase and Diaphanous: use of zebrafish as an in vivo model for GTPase signaling. Cell Signal 18, 359–372.

    PubMed  CAS  Google Scholar 

  75. Keller, R., Shih, J., Domingo, C. (1992) The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser. Dev Suppl, 81–91.

    Google Scholar 

  76. Trinkaus, J. P., Trinkaus, M., Fink, R. D. (1992) On the convergent cell movements of gastrulation in Fundulus. J Exp Zool 261, 40–61.

    PubMed  CAS  Google Scholar 

  77. Warga, R. M., Kimmel, C. B. (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108, 569–580.

    PubMed  CAS  Google Scholar 

  78. Myers, D. C., Sepich, D. S., Solnica-Krezel, L. (2002) Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev Biol 243, 81–98.

    PubMed  CAS  Google Scholar 

  79. Wallingford, J. B., Rowning, B. A., Vogeli, K. M., et al. (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85.

    PubMed  CAS  Google Scholar 

  80. Keller, R. E., Danilchik, M., Gimlich, R., et al. (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morphol 89 Suppl, 185–209.

    PubMed  CAS  Google Scholar 

  81. Kiecker, C., Niehrs, C. (2001) The role of prechordal mesendoderm in neural patterning. Curr Opin Neurobiol 11, 27–33.

    PubMed  CAS  Google Scholar 

  82. Montero, J. A., Carvalho, L., WilschBrauninger, M., et al. (2005) Shield formation at the onset of zebrafish gastrulation. Development 132, 1187–1198.

    PubMed  CAS  Google Scholar 

  83. Puech, P. H., Taubenberger, A., Ulrich, F., et al. (2005) Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J Cell Sci 118, 4199–4206.

    PubMed  CAS  Google Scholar 

  84. von der Hardt, S., Bakkers, J., Inbal, A., et al. (2007) The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion. Curr Biol 17, 475–487.

    PubMed  Google Scholar 

  85. Classen, A. K., Anderson, K. I., Marois, E., et al. (2005) Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev Cell 9, 805–817.

    PubMed  CAS  Google Scholar 

  86. Kimmel, C. B., Warga, R. M., Kane, D. A. (1994) Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120, 265–276.

    PubMed  CAS  Google Scholar 

  87. Geldmacher-Voss, B., Reugels, A. M., Pauls, S., et al. (2003) A 90-degree rotation of the mitotic spindle changes the orientation of mitoses of zebrafish neuroepithelial cells. Development 130, 3767–3780.

    PubMed  CAS  Google Scholar 

  88. Cavodeassi, F., Carreira-Barbosa, F., Young, R. M., et al. (2005) Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/betacatenin pathway. Neuron 47, 43–56.

    PubMed  CAS  Google Scholar 

  89. Caneparo, L., Huang, Y. L., Staudt, N.,et al. (2007) Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/beta catenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek. Genes Dev 21, 465–480.

    PubMed  CAS  Google Scholar 

  90. Mukhopadhyay, M., Shtrom, S., RodriguezEsteban, C., et al. (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1, 423–434.

    PubMed  CAS  Google Scholar 

  91. Shinya, M., Eschbach, C., Clark, M., et al. (2000) Zebrafish Dkk1, induced by the preMBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 98, 3–17.

    PubMed  CAS  Google Scholar 

  92. Mao, B., Wu, W., Li, Y., et al. (2001) LDLreceptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325.

    PubMed  CAS  Google Scholar 

  93. Sprague, J., Bayraktaroglu, L., Clements, D., et al. (2006) The Zebrafish Infromation network (ZFIN): the zebrafish model organism database. Nucleic Acids Res 34, D581–D585.

    PubMed  CAS  Google Scholar 

  94. Liu, A., Majumdar, A., Schauerte, H. E., et al. (2000) Zebrafish wnt4b expression in the floor plate is altered in sonic hedgehog and gli-2 mutants. Mech Dev 91, 409–413.

    PubMed  CAS  Google Scholar 

  95. Krauss, S., Korzh, V., Fjose, A., et al. (1992) Expression of four zebrafish wnt-related genes during embryogenesis. Development 116, 249–259.

    PubMed  CAS  Google Scholar 

  96. Norton, W. H., Mangoli, M., Lele, Z., et al. (2005) Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones. Development 132, 645–658.

    PubMed  CAS  Google Scholar 

  97. Kelly, G. M., Lai, C. J., Moon, R. T. (1993) Expression of wnt10a in the central nervous system of developing zebrafish. Dev Biol 158, 113–121.

    PubMed  CAS  Google Scholar 

  98. Wang, Y., Macke, J. P., Abella, B. S., et al. (1996) A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem 271, 4468–4476.

    PubMed  CAS  Google Scholar 

  99. Van Raay, T. J., Wang, Y. K., Stark, M. R., et al. (2001) frizzled 9 is expressed in neural precursor cells in the developing neural tube. Dev Genes Evol 211, 453–457.

    PubMed  Google Scholar 

  100. Peng, G., Westerfield, M. (2006) Lhx5 promotes forebrain development and activates transcription of secreted Wnt antagonists. Development 133, 3191–3200.

    PubMed  CAS  Google Scholar 

  101. Tendeng, C., Houart, C. (2006) Cloning and embryonic expression of five distinct sfrp genes in the zebrafish Danio rerio. Gene Expr Patterns 6, 761–771.

    PubMed  CAS  Google Scholar 

  102. Kobayashi, M., Nishikawa, K., Suzuki, T., et al. (2001) The homeobox protein Six3 interacts with the Groucho corepressor and acts as a transcriptional repressor in eye and forebrain formation. Dev Biol 232, 315–326.

    PubMed  CAS  Google Scholar 

  103. Wülbeck, C., Campos-Ortega, J. A. (1997) Two zebrafish homologues of the Drosophila neurogenic gene groucho and their pattern of transcription during early embryogenesis. Dev Genes Evol 207, 156–166.

    Google Scholar 

  104. Salas-Vidal, E., Meijer, A. H., Cheng, X., et al. (2005) Genomic annotation and expression analysis of the zebrafish Rho small GTPase family during development and bacterial infection. Genomics 86, 25–37.

    PubMed  CAS  Google Scholar 

  105. Jessen, J. R., Solnica-Krezel, L. (2004) Identification and developmental expression pattern of van gogh-like 1, a second zebrafish strabismus homologue. Gene Expr Patterns 4, 339–344.

    PubMed  CAS  Google Scholar 

  106. Molven, A., Njolstad, P. R., Fjose, A. (1991) Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. Embo J 10, 799–807.

    PubMed  CAS  Google Scholar 

  107. Amoyel, M., Cheng, Y. C., Jiang, Y. J., et al. (2005) Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development 132, 775–785.

    PubMed  CAS  Google Scholar 

  108. Lekven, A. C., Buckles, G. R., Kostakis, N., et al. (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev Biol 254, 172–187.

    PubMed  CAS  Google Scholar 

  109. Riley, B. B., Chiang, M. Y., Storch, E. M., et al. (2004) Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain. Dev Dyn 231, 278–291.

    PubMed  CAS  Google Scholar 

  110. Ng, J. K., Kawakami, Y., Buscher, D., et al. (2002) The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 129, 5161–5170.

    PubMed  CAS  Google Scholar 

  111. Ramel, M. C., Buckles, G. R., Baker, K. D., et al. (2005) WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev Biol 287, 237–248.

    PubMed  CAS  Google Scholar 

  112. Buckles, G. R., Thorpe, C. J., Ramel, M. C., et al. (2004) Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation. Mech Dev 121, 437–447.

    PubMed  CAS  Google Scholar 

  113. Thorpe, C. J., Weidinger, G., Moon, R. T. (2005) Wnt/beta-catenin regulation of the Sp1-related transcription factor sp5l promotes tail development in zebrafish. Development 132, 1763–1772.

    PubMed  CAS  Google Scholar 

  114. Poss, K. D., Shen, J., Keating, M. T. (2000) Induction of lef1 during zebrafish fin regeneration. Dev Dyn 219, 282–286.

    PubMed  CAS  Google Scholar 

  115. Amsterdam, A., Sadler, K. C., Lai, K., et al. (2004) Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2, E139.

    PubMed  Google Scholar 

  116. Golling, G., Amsterdam, A., Sun, Z., et al. (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31, 135–140.

    PubMed  CAS  Google Scholar 

  117. Gong, Y., Mo, C., Fraser, S. E. (2004) Planar cell polarity signalling controls cell division orientation during zebrafish gastru-lation. Nature 430, 689–693.

    PubMed  CAS  Google Scholar 

  118. Kim, H. J., Schleif farth, J. R., Jessurun, J., et al. (2005) Wnt5 signaling in vertebrate pancreas development. BMC Biol 3, 23–452.

    PubMed  Google Scholar 

  119. Agathon, A., Thisse, C., Thisse, B. (2003) The molecular nature of the zebrafish tail organizer. Nature 424, 448–452.

    PubMed  CAS  Google Scholar 

  120. Erter, C. E., Wilm, T. P., Basler, N., et al. (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128, 3571–3583.

    PubMed  CAS  Google Scholar 

  121. Lekven, A. C., Thorpe, C. J., Waxman, J. S., et al. (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1, 103–114.

    PubMed  CAS  Google Scholar 

  122. Momoi, A., Yoda, H., Steinbeisser, H., et al. (2003) Analysis of Wnt8 for neural posteriorizing factor by identifying Frizzled 8c and Frizzled 9 as functional receptors for Wnt8. Mech Dev 120, 477–489.

    PubMed  CAS  Google Scholar 

  123. Ramel, M. C., Buckles, G. R., Lekven, A. C. (2004) Conservation of structure and func tional divergence of duplicated Wnt8s in pufferfish. Dev Dyn 231, 441–448.

    PubMed  CAS  Google Scholar 

  124. Weidinger, G., Thorpe, C. J., Wuennenberg-Stapleton, K., et al. (2005) The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning. Curr Biol 15, 489–500.

    PubMed  CAS  Google Scholar 

  125. Houart, C., Caneparo, L., Heisenberg, C., et al. (2002) Establishment of the tel-encephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35, 255–265.

    PubMed  CAS  Google Scholar 

  126. Kim, S. H., Shin, J., Park, H. C., et al. (2002) Specification of an anterior neuroectoderm patterning by Frizzled8a-mediated Wnt8b signalling during late gastrulation in zebrafish. Development 129, 4443–4455.

    PubMed  CAS  Google Scholar 

  127. Lee, J. E., Wu, S. F., Goering, L. M., et al. (2006) Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133, 4451–4461.

    PubMed  CAS  Google Scholar 

  128. Groves, J. A., Hammond, C. L., Hughes, S. M. (2005) Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish. Development 132, 4211–4222.

    PubMed  CAS  Google Scholar 

  129. Katoh, M. (2005) WNT/PCP signaling pathway and human cancer (review). Oncol Rep 14, 1583–1588.

    PubMed  CAS  Google Scholar 

  130. Oishi, I., Kawakami, Y., Raya, A., et al. (2006) Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nat Genet 38, 1316–1322.

    PubMed  CAS  Google Scholar 

  131. Fong, S. H., Emelyanov, A., Teh, C., et al. (2005) Wnt signalling mediated by Tbx2b regulates cell migration during formation of the neural plate. Development 132, 3587–3596.

    PubMed  CAS  Google Scholar 

  132. Knowlton, M. N., Chan, B. M., Kelly, G. M. (2003) The zebrafish band 4.1 member Mir is involved in cell movements associated with gastrulation. Dev Biol 264, 407–429.

    PubMed  CAS  Google Scholar 

  133. Kim, S. H., Park, H. C., Yeo, S. Y., et al. (1998) Characterization of two frizzled8 homologues expressed in the embryonic shield and prechordal plate of zebrafish embryos. Mech Dev 78, 193–201.

    PubMed  CAS  Google Scholar 

  134. Nasevicius, A., Hyatt, T., Kim, H., et al. (1998) Evidence for a frizzled-mediated wnt pathway required for zebrafish dorsal mesoderm formation. Development 125, 4283–4292.

    PubMed  CAS  Google Scholar 

  135. Nasevicius, A., Hyatt, T. M., Her manson, S. B., et al. (2000) Sequence, expression, and location of zebrafish frizzled 10. Mech Dev 92, 311–314.

    PubMed  CAS  Google Scholar 

  136. Pezeron, G., Anselme, I., Laplante, M., et al. (2006) Duplicate sfrp1 genes in zebrafish: sfrp1a is dynamically expressed in the developing central nervous system, gut and lateral line. Gene Expr Patterns 6, 835–842.

    PubMed  CAS  Google Scholar 

  137. Kapsimali, M., Caneparo, L., Houart, C., et al. (2004) Inhibition of Wnt/Axin/betacatenin pathway activity promotes ventral CNS midline tissue to adopt hypothalamic rather than floorplate identity. Development 131, 5923–5933.

    PubMed  CAS  Google Scholar 

  138. Kim, H. S., Shin, J., Kim, S. H., et al. (2007) Eye field requires the function of Sfrp1 as a Wnt antagonist. Neurosci Lett 414, 26–29.

    PubMed  CAS  Google Scholar 

  139. Stigloher, C., Ninkovic, J., Laplante, M., et al. (2006) Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3. Development 133, 2925–2935.

    PubMed  CAS  Google Scholar 

  140. Bellipanni, G., Varga, M., Maegawa, S., et al. (2006) Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm. Development 133, 1299–1309.

    PubMed  CAS  Google Scholar 

  141. Kelly, G. M., Erezyilmaz, D. F., Moon, R. T. (1995) Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of beta-catenin. Mech Dev 53, 261–273.

    PubMed  CAS  Google Scholar 

  142. Kelly, C., Chin, A. J., Leatherman, J. L., et al. (2000) Maternally controlled b-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127, 3899–3911.

    PubMed  CAS  Google Scholar 

  143. Maegawa, S., Varga, M., Weinberg, E. S. (2006) FGF signaling is required for {beta}catenin-mediated induction of the zebrafish organizer. Development 133, 3265–3276.

    PubMed  CAS  Google Scholar 

  144. van de Water, S., van de Wetering, M., Joore, J., et al. (2001) Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development 128, 3877–3888.

    PubMed  Google Scholar 

  145. Schwarz-Romond, T., Asbrand, C., Bakkers, J., et al. (2002) The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev 16, 2073–2084.

    PubMed  CAS  Google Scholar 

  146. Shimizu, T., Yamanaka, Y., Ryu, S. L., et al. (2000) Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech Dev 91, 293–303.

    PubMed  CAS  Google Scholar 

  147. Tsai, J. N., Lee, C. H., Jeng, H., et al. (2000) Differential expression of glycogen synthase kinase 3 genes during zebrafish embryogenesis. Mech Dev 91, 387–391.

    PubMed  CAS  Google Scholar 

  148. Tokuoka, H., Yoshida, T., Matsuda, N., et al. (2002) Regulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish. J Neurosci 22, 10324–10332.

    PubMed  CAS  Google Scholar 

  149. Eisinger, A. L., Nadauld, L. D., Shelton, D. N., et al. (2006) The adenomatous polyposis coli tumor suppressor gene regulates expression of cyclooxygenase-2 by a mechanism that involves retinoic acid. J Biol Chem 281, 20474–20482.

    PubMed  CAS  Google Scholar 

  150. Nadauld, L. D., Chidester, S., Shelton, D. N., et al. (2006) Dual roles for adenomatous polyposis coli in regulating retinoic acid biosynthesis and Wnt during ocular development. Proc Natl Acad Sci USA 103, 13409–13414.

    PubMed  CAS  Google Scholar 

  151. Nadauld, L. D., Phelps, R., Moore, B. C., et al. (2006) Adenomatous polyposis coli control of C-terminal binding protein-1 stability regulates expression of intestinal retinol dehydrogenases. J Biol Chem 281, 37828–37835.

    PubMed  CAS  Google Scholar 

  152. Nadauld, L. D., Sandoval, I. T., Chidester, S., et al. (2004) Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation. J Biol Chem 279, 51581–51589.

    PubMed  CAS  Google Scholar 

  153. Nadauld, L. D., Shelton, D. N., Chidester, S., et al. (2005) The zebrafish retinol dehydrogenase, rdh1l, is essential for intestinal development and is regulated by the tumor suppressor adenomatous polyposis coli. J Biol Chem 280, 30490–30495.

    PubMed  CAS  Google Scholar 

  154. Dorsky, R. I., Snyder, A., Cretekos, C. J., et al. (1999) Maternal and embryonic expression of zebrafish lef1. Mech Dev 86, 147–150.

    PubMed  CAS  Google Scholar 

  155. Shelton, D. N., Sandoval, I. T., Eisinger, A., et al. (2006) Up-regulation of CYP26A1 in adenomatous polyposis coli-deficient vertebrates via a WNT-dependent mechanism: implications for intestinal cell differentiation and colon tumor development. Cancer Res 66, 7571–7577.

    PubMed  CAS  Google Scholar 

  156. Nyholm, M. K., Wu, S. F., Dorsky, R. I., et al. (2007) The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum. Development 134, 735–746.

    PubMed  CAS  Google Scholar 

  157. Veien, E. S., Grierson, M. J., Saund, R. S., et al. (2005) Expression pattern of zebrafish tcf7 suggests unexplored domains of Wnt/beta-catenin activity. Dev Dyn 233, 233–239.

    PubMed  CAS  Google Scholar 

  158. Dorsky, R. I., Itoh, M., Moon, R. T., et al. (2003) Two tcf3 genes cooperate to pattern the zebrafish brain. Development 130, 1937–1947.

    PubMed  CAS  Google Scholar 

  159. Pelegri, F., Maischein, H. M. (1998) Function of zebrafish beta-catenin and TCF-3 in dorsoventral patterning. Mech Dev 77, 63–74.

    PubMed  CAS  Google Scholar 

  160. Thorpe, C. J., Moon, R. T. (2004) nemolike kinase is an essential co-activator of Wnt signaling during early zebrafish development. Development 131, 2899–2909.

    PubMed  CAS  Google Scholar 

  161. Dorsky, R. I., Sheldahl, L. C., Moon, R. T. (2002) A transgenic Lef1/beta-catenindependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241, 229–237.

    PubMed  CAS  Google Scholar 

  162. Ishitani, T., Matsumoto, K., Chitnis, A. B., et al. (2005) Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nat Cell Biol 7, 1106–1112.

    PubMed  CAS  Google Scholar 

  163. Leung, T., Soll, I., Arnold, S. J., et al. (2003) Direct binding of Lef1 to sites in the boz promoter may mediate pre-midblastulatransition activation of boz expression. Dev Dyn 228, 424–432.

    PubMed  CAS  Google Scholar 

  164. Angers, S., Thorpe, C. J., Biechele, T. L., et al. (2006) The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-betacatenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348–357.

    PubMed  CAS  Google Scholar 

  165. Nambiar, R. M., Henion, P. D. (2004) Sequential antagonism of early and late Wnt-signaling by zebrafish colgate promotes dorsal and anterior fates. Dev Biol 267, 165–180.

    PubMed  CAS  Google Scholar 

  166. Hashimoto, H., Itoh, M., Yamanaka, Y., et al. (2000) Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217, 138–152.

    PubMed  CAS  Google Scholar 

  167. R yu, S. L., Fujii, R., Yamanaka, Y., et al. (2001) Regulation of dharma/bozozok by the Wnt pathway. Dev Biol 231, 397–409.

    PubMed  CAS  Google Scholar 

  168. Gillhouse, M., Wagner Nyholm, M., Hikasa, H., et al. (2004) Two Frodo/Dapper homologs are expressed in the developing brain and mesoderm of zebrafish. Dev Dyn 230, 403–409.

    PubMed  CAS  Google Scholar 

  169. Waxman, J. S. (2005) Regulation of the early expression patterns of the zebrafish Dishevelled-interacting proteins Dapper1 and Dapper2. Dev Dyn 233, 194–200.

    PubMed  CAS  Google Scholar 

  170. Wada, N., Javidan, Y., Nelson, S., et al. (2005) Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development 132, 3977–3988.

    PubMed  CAS  Google Scholar 

  171. Bingham, S., Higashijima, S., Okamoto, H., et al. (2002) The Zebrafish trilobite gene is essential for tangential migration of branchiomotor neurons. Dev Biol 242, 149–160.

    PubMed  CAS  Google Scholar 

  172. Henr y, C. A., Hall, L. A., BurrHille, M., et al. (2000) Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction. Curr Biol 10, 1063–1066.

    PubMed  CAS  Google Scholar 

  173. Lopez-Schier, H., Hudspeth, A. J. (2006) A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proc Natl Acad Sci USA 103, 18615–18620.

    PubMed  CAS  Google Scholar 

  174. Marlow, F., Zwar tkruis, F., Malicki, J., et al. (1998) Functional interactions of genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primordium in zebrafish. Dev Biol 203, 382–399.

    PubMed  CAS  Google Scholar 

  175. Sepich, D. S., Calmelet, C., Kiskowski, M., et al. (2005) Initiation of convergence and extension movements of lateral mesoderm during zebrafish gastrulation. Dev Dyn 234, 279–292.

    PubMed  CAS  Google Scholar 

  176. Biemar, F., Argenton, F., Schmidtke, R., et al. (2001) Pancreas Development in Zebrafish: Early Dispersed Appearance of Endocrine Hormone Expressing Cells and Their Convergence to Form the Definitive Islet. Dev Biol 230, 189–203.

    PubMed  CAS  Google Scholar 

  177. Hannus, M., Feiguin, F., Heisenberg, C. P., et al. (2002) Planar cell polarization requires Widerborst, a B'regulatory subunit of protein phosphatase 2A. Development 129, 3493–3503.

    PubMed  CAS  Google Scholar 

  178. Wada, H., Iwasaki, M., Sato, T., et al. (2005) Dual roles of zygotic and maternal Scribble1 in neural migration and convergent extension movements in zebrafish embryos. Development 132, 2273–2285.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work on zebrafish intestinal development in the Heath laboratory is supported by the National Health and Medical Research Council (NHMRC), Australia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Verkade, H., Heath, J.K. (2008). Wnt Signaling Mediates Diverse Developmental Processes in Zebrafish. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology, vol 469. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-469-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-469-2_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-468-5

  • Online ISBN: 978-1-60327-469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics