Skip to main content

Affinity Partitioning of Proteins

  • Protocol
Book cover Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 147))

Abstract

Biopolymers can be separated by partitioning between two aqueous phases generated by two polymers dissolved together in water (1,2). The partitioning of proteins and nucleic acids between the two phases may be affected by changing the concentration of polymers, usually dextran and polyethylene glycol (PEG), and by including various salts and adjusting the pH value of the system (1,3). A more effective way to adjust the partitioning and also to strongly increase the selectivity in the partitioning of biopolymers has been to bind charged groups, hydrophobic groups, or affinity ligands to one of the polymers that localizes the attached groups to the phase enriched in this polymer (46). Mainly by using a variety of methods, affinity ligands have been bound to PEG, concentrated in the top phase (7). However, dextran has been used also as ligand carrier for affinity partitioning (8). Affinity partitioning can be used both for single-step extractions (9) and for countercurrent distribution (10). The two-phase systems can be applied in chromatographic processes by adsorbing one of the phases to a matrix and using the other one as the mobile phase (11). Besides the extraction and separation of proteins (6,12) and nucleic acids (13), affinity partitioning also has been used for fractionation of particulate biomaterials such as membranes (1416).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertsson P.-Å. (1986) Partition of Cell Particles and Macromolecules, 3rd ed., Wiley, New York.

    Google Scholar 

  2. Walter H. and Johansson G., eds. (1974) Methods in Enzymology, vol. 228, Aqueous Two-Phase Systems, Academic San Diego, CA.

    Google Scholar 

  3. Johansson G. (1974) Partition of proteins and micro-organisms in aqueous biphasic systems. Mol. Cell. Biochem. 4, 169–180.

    Article  PubMed  CAS  Google Scholar 

  4. Johansson G., Hartman A., and Albertsson P.-Å. (1973) Partition of proteins in two-phase systems containing charged poly(ethylene glycol). Eur. J. Biochem. 33, 379–386.

    Article  PubMed  CAS  Google Scholar 

  5. Johansson G. (1994) Uses of poly(ethylene glycol) with charged or hydrophobic groups, in Methods in Enzymology, vol. 228, Aqueous Two-Phase Systems (Walter H. and Johansson G., eds.) Academic San Diego, CA, pp. 64–74.

    Chapter  Google Scholar 

  6. Kopperschläger G. and Birkenmeier G. (1990) Affinity partitioning and extraction of proteins. Bioseparation 1, 235–254.

    PubMed  Google Scholar 

  7. Harris J. M. (1985) Laboratory synthesis of polyethylene glycol derivatives. J. Macromol. Sci., Rev. Polym. Chem. Phys. C25, 325–373.

    CAS  Google Scholar 

  8. Johansson G. and Joelsson M. (1987) Affinity partitioning of enzymes using dextran-bound Procion yellow HE-3G. Influence of dye-ligand density. J. Chromatogr. 393, 195–208.

    Article  PubMed  CAS  Google Scholar 

  9. Tjerneld F., Johansson G., and Joelsson M. (1987) Affinity liquid-liquid extraction of lactate dehydrogenase on a large scale. Biotechnol. Bioeng. 30, 809–816.

    Article  PubMed  CAS  Google Scholar 

  10. Johansson G. (1995) Multistage countercurrent distribution, in The Encyclopedia of Analytical Science (Townshend A., ed.), Academic London, pp. 4709–4716.

    Google Scholar 

  11. Müller W. (1994) Columns using aqueous two-phase systems, in Methods in Enzymology, vol. 228, Aqueous Two-Phase Systems (Walter H. and Johansson G., eds.) Academic San Diego, CA, pp. 100–112.

    Chapter  Google Scholar 

  12. Johansson G., Kopperschläger G., and Albertsson P.-Å. (1983) Affinity partitioning of phosphofructokinase from baker’s yeast using polymer-bound Cibacron blue F3G-A. Eur. J. Biochem. 131, 589–594.

    Article  PubMed  CAS  Google Scholar 

  13. Müller W. (1985) Partitioning of nucleic acids, in Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. (Walter H., Brooks D. E., and D. Fisher, eds.), Academic, Orlando, FL, pp. 227–266.

    Google Scholar 

  14. Flanagan S. D. and Barondes S. H. (1975) Affinity partitioning—a method for purification of proteins using specific polymer-ligands in aqueous polymer two-phase systems. J. Biol. Chem. 250, 1484–1489.

    PubMed  CAS  Google Scholar 

  15. Olde B. and Johansson G. (1985) Affinity partitioning and centrifugal countercurrent distribution of membrane-bound opiate receptors using Naloxone poly(ethylene glycol). Neuroscience 15, 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  16. Persson A., Johansson B., Olsson H., and Jergil B. (1991). Purification of rat liver plasma membranes by wheat-germ-agglutinin affinity partitioning. Biochem. J. 273, 176,177.

    Google Scholar 

  17. Johansson G. (1976) The effect of poly(ethyleneglycol) esters on the partition onproteins and fragmented membranes in aqueous biphasic systems. Biochim. Biophys.Acta 451, 517–529.

    PubMed  CAS  Google Scholar 

  18. Johansson G. (1988) Separation of biopolymers by partition in aqueous two-phase systems. Sep. Purific. Methods 17, 185–205.

    Article  CAS  Google Scholar 

  19. Johansson G. and Joelsson M. (1986) Liquid-liquid extraction of lactate dehydrogenase from muscle using polymer-bound triazine dyes. Appl. Biochem. Biotechnol. 13, 15–27.

    Article  PubMed  CAS  Google Scholar 

  20. Åkerlund H.-E. and Albertsson P.-Å. (1994). Thin-layer countercurrent distribution and centrifugal countercurrent distribution apparatus, in Methods in Enzymology, vol. 228, Aqueous Two-Phase Systems (Walter H. and Johansson G., eds.) Academic, San Diego, CA, pp. 87–99.

    Google Scholar 

  21. Johansson G., Andersson M., and Åkerlund H.-E. (1984). Counter-current distribution of yeast enzymes with polymer-bound triazine dye affinity ligands. J. Chromatogr. 298, 483–493.

    Article  CAS  Google Scholar 

  22. Bradford M. M. (1983) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal. Biochem. 72, 248–254.

    Article  Google Scholar 

  23. Zaslavsky B. Y. (1995). Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications, Marcel Dekker New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Johansson, G. (2000). Affinity Partitioning of Proteins. In: Bailon, P., Ehrlich, G.K., Fung, WJ., Berthold, W. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 147. Humana Press. https://doi.org/10.1007/978-1-60327-261-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-261-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-694-9

  • Online ISBN: 978-1-60327-261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics