Skip to main content
Book cover

Lipid Rafts pp 193–219Cite as

Single-Molecule Tracking

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

The current models of eukaryotic plasma membrane organization separate the plasma membrane into different environments created by lipids and interactions between membrane proteins and the cytoskeleton, but characterization of their physical properties, such as their sizes, lifetimes, and the partitioning of membrane components into each environment, has not been accomplished. Single-molecule (fluorophore) tracking (SMT) experiments are well suited to the noninvasive study of membrane properties. In SMT experiments, the position of a single fluorescently labeled protein or lipid probe is followed optically as it moves within the membrane. If the motion of the probe is unhindered, then the spatial trajectory of the molecule will follow two-dimensional Brownian motion. If the probe encounters a structure that in some way inhibits its movement, then the probe’s trajectory will deviate from Brownian motion. It is likely that even if a certain type of lipid or protein partitions strongly into one environment, each individual lipid or protein will spend some fraction of its lifetime in the less favorable environment. Because SMT follows the motion of an individual probe over a large area (∼10 × 10 µm2), transitions between environments can be observed directly by monitoring the path of each protein or lipid. Additionally, heterogeneity owing to multiple populations of molecules permanently residing in different states may be distinguished from a single population of molecules transitioning between different states. By judicious choice of label, such that the motion of the labeled protein or lipid is unaffected by the label itself, and through the use of probes with different affinities for each membrane environment, SMT measurements in principle can reveal the structure of the plasma membrane.

Contributed equally

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Anderson, R. G. W. and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts and other lipid domains. Science 296, 1821–1825.

    Article  CAS  PubMed  Google Scholar 

  2. McConnell, H. M. and Vrljic, M. (2003) Liquid-liquid immiscibility in membranes. Ann. Rev. Biophys. Biomol. Struct. 32, 469–492.

    Article  CAS  Google Scholar 

  3. Kenworthy, A. K., Nichols, B. J., Remmert, C. L., et al. (2004) Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746.

    Article  CAS  PubMed  Google Scholar 

  4. Lagerholm, B. C., Weinreb, G. E., Jacobson, K., and Thompson, N. L. (2005) Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336.

    Article  CAS  PubMed  Google Scholar 

  5. Saffman, P. G. and Delbruck, M. (1975) Brownian motion in biological membranes Proc. Nat. Acad. Sci. USA 72, 3111–3113.

    Article  CAS  PubMed  Google Scholar 

  6. Hughes, B. D., Pailthorpe, B. A., and White, L. R. (1981) The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110, 349–372.

    Article  CAS  Google Scholar 

  7. Rabinowitz, J. D., Vacchino, J. F., Beeson, C., and McConnell, H. M. (1998) Potentiometric measurement of intracellular redox activity. J. Am. Chem. Soc. 120, 2464–2473.

    Article  CAS  Google Scholar 

  8. Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., and Selvin, P. R. (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5nm localization. Science 300, 2061–2065.

    Article  CAS  PubMed  Google Scholar 

  9. Moerner, W. E. (1994) Fundamentals of single-molecule spectroscopy in solids. J. Lumin. 60-61, 997–1002.

    Article  CAS  Google Scholar 

  10. Moerner, W. E. and Fromm, D. P. (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619.

    Article  CAS  Google Scholar 

  11. Saxton, M. (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66, 394–401.

    Article  CAS  PubMed  Google Scholar 

  12. Saxton, M. J. (1993) Lateral diffusion in an archipelago. Single-particle diffusion. Biophys. J. 64, 1766–1780.

    Article  CAS  PubMed  Google Scholar 

  13. Saxton, M. J. (1995) Single-particle tracking: effects of corrals, Biophys. J. 69, 389–398.

    Article  CAS  PubMed  Google Scholar 

  14. Saxton, M. J. (1990) Lateral diffusion in a mixture of mobile and immobile particles. A Monte Carlo study. Biophys. J. 58, 1303–1306.

    Article  CAS  PubMed  Google Scholar 

  15. Saxton, M. J. (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72, 1744–1753.

    Article  CAS  PubMed  Google Scholar 

  16. Schütz, G. J., Kada, G., Pastushenko, V. P., and Schindler, H. (2000) Properties of lipid microdomains in muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901.

    Article  PubMed  Google Scholar 

  17. Qian, H., Sheetz, M. P., and Elson, E. L. (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921.

    Article  CAS  PubMed  Google Scholar 

  18. Saxton, M. J. and Jacobson, K. (1997) Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399.

    Article  CAS  PubMed  Google Scholar 

  19. Vrljic, M., Nishimura, S. Y., Brasselet, S., Moerner, W. E., and McConnell, H. M. (2002) Translational Diffusion of Individual Class II MHC Membrane Proteins in Cells. Biophys. J. 83, 2681–2692.

    Article  CAS  PubMed  Google Scholar 

  20. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A., and Jacobson, K. (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284.

    Article  CAS  PubMed  Google Scholar 

  21. Schütz, G. J., Schindler, H., and Schmidt, T. (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080.

    Article  PubMed  Google Scholar 

  22. Smith, P. R., Morrison, I. E. G., Wilson, K. M., Fernandez, N., and Cherry, R. J. (1999) Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys. J. 76, 3331–3344.

    Article  CAS  PubMed  Google Scholar 

  23. Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B., and Webb, W. W. (1996) Constrained diffusion of immobile fraction on cell surfaces: a new interpretation. Biophys. J. 70, 2767–2773.

    Article  CAS  PubMed  Google Scholar 

  24. Saxton, M. J. (2001) Anomalous Subdifusion in Fluorescence Photobleaching Recovery: a Monte Carlo Study. Biophys. J. 81, 2226–2240.

    Article  CAS  PubMed  Google Scholar 

  25. Simson, R., Sheets, E. D., and Jacobson, K. (1995) Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993.

    Article  CAS  PubMed  Google Scholar 

  26. Vrljic, M., Nishimura, S. Y., Moerner, W. E., and McConnell, H. M. (2005) Cholesterol depletion suppresses the translational diffusion of Class II Major Histocompatibility Complex proteins in the plasma membrane. Biophys. J. 88, 334–347.

    Article  CAS  PubMed  Google Scholar 

  27. Murase, K., Fujiwara, T., Umemura, Y., et al. (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86, 4075–4093.

    Article  CAS  PubMed  Google Scholar 

  28. Willets, K. A., Callis, P. R., and Moerner, W. E. (2004) Experimental and theoretical investigations of environmentally sensitive single-molecule fluorophores. J. Phys. Chem. B 108, 10,465–10,473.

    Article  CAS  Google Scholar 

  29. Willets, K. A., Nishimura, S. Y., Schuck, P. J., Twieg, R. J., and Moerner, W. (2005) Nonlinear optical chromophores as nanoscale emitters for single-molecule spectroscopy. Acc. Chem. Res. 38, 549–556.

    Article  CAS  PubMed  Google Scholar 

  30. Willets, K. A., Ostroverkhova, O., He, M., Twieg, R. J., and Moerner, W. (2003) New Fluorophores for Single-Molecule Spectroscopy. J. Am. Chem. Soc. 125, 1174–1175.

    Article  CAS  PubMed  Google Scholar 

  31. Nishimura, S. Y., Lord, S. J., Klein, L. O., et al. (2006) Diffusion of Lipid-like Single-Molecule Fluorophores in the Cell Membrane. J. Phys. Chem. B 110, 8151–8157.

    Article  CAS  PubMed  Google Scholar 

  32. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., and Kusumi, A. (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  33. Ewers, H., Smith, A. E., Sbalzarini, I. F., Lilie, H., Koumoutsakos, P., and Helenius, A. (2005) Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc. Nat. Acad. Sci. USA 102, 15,110–15,115.

    Article  CAS  PubMed  Google Scholar 

  34. Nishimura, S. Y., Vrljic, M., Klein, L. O., McConnell, H. M., and Moerner, W. (2006) Cholesterol depletion induces solid-like regions in the plasma membrane. Biophys. J. 90, 927–938.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Vrljic, M., Nishimura, S.Y., Moerner, W.E. (2007). Single-Molecule Tracking. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics