Skip to main content

Retroviral Modification of Mesenchymal Stem Cells for Gene Therapy of Hemophilia

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 433))

Summary

Mesenchymal stem cells (MSCs) are a promising target for the delivery of secreted proteins due to their ease of isolation, expansion, and genetic modification. The bleeding disorder hemophilia A results from the deficiency of a secreted blood clotting factor termed factor VIII (fVIII). Hemophilia A could be cured by gene-transfer-based procedures targeting virtually any cell type, including MSCs. Here, we describe methods for retroviral modification of MSCs incorporating a high-expression porcine (HEP)-fVIII transgene and a murine model of hemophilia A. MSCs were isolated from bone marrow of hemophilia A mice, expanded, and transduced ex vivo. Genetically modified MSCs secreted high levels of HEP-fVIII into the conditioned medium. HEP-fVIII was purified from the conditioned medium and demonstrated to have a specific activity, relative electrophoretic mobility, and proteolytic activation pattern similar to HEP-fVIII produced by other commercial cell lines. Collectively, these data support the concept that MSCs can be utilized as a cellular vehicle for successful gene-transfer-based therapy of hemophilia A and other disorders resulting from the deficiency of a secreted protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–4 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Devine, S.M. Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl 38, 73–9 (2002).

    Article  PubMed  Google Scholar 

  3. Friedenstein, A.J., Chailakhjan, R.K. and Lalykina, K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3, 393–403 (1970).

    CAS  PubMed  Google Scholar 

  4. Friedenstein, A.J., Gorskaja, J.F. and Kulagina, N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4, 267–74 (1976).

    CAS  PubMed  Google Scholar 

  5. Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I. and Frolova, G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230–47 (1968).

    Article  CAS  PubMed  Google Scholar 

  6. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Meirelles Lda, S. and Nardi, N.B. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123, 702–11 (2003).

    Article  PubMed  Google Scholar 

  8. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Peister, A., Mellad, J.A., Larson, B.L., Hall, B.M., Gibson, L.F. and Prockop, D.J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103, 1662–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Horwitz, E.M. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5, 309–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Horwitz, E.M. et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97, 1227–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ding, L., Lu, S., Batchu, R., Iii, R.S. and Munshi, N. Bone marrow stromal cells as a vehicle for gene transfer. Gene Ther 6, 1611–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Gao, J., Dennis, J.E., Muzic, R.F., Lundberg, M. and Caplan, A.I. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169, 12–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sato, Y. et al. Human mesenchymal stem cells xenografted directly to rat liver differentiated into human hepatocytes without fusion. Blood 106, 756–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Eliopoulos, N., Al-Khaldi, A., Crosato, M., Lachapelle, K. and Galipeau, J. A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice. Gene Ther 10, 478–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Eliopoulos, N., Gagnon, R.F., Francois, M. and Galipeau, J. Erythropoietin delivery by genetically engineered bone marrow stromal cells for correction of anemia in mice with chronic renal failure. J Am Soc Nephrol 17, 1576–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Eliopoulos, N., Lejeune, L., Martineau, D. and Galipeau, J. Human-compatible collagen matrix for prolonged and reversible systemic delivery of erythropoietin in mice from gene-modified marrow stromal cells. Mol Ther 10, 741–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Gangadharan, B., Parker, E.T., Ide, L.M., Spencer, h.T. and Doering, C.B. High-level expression of porcine factor VIII from genetically modified bone marrow-derived stem cells. Blood 107, 3859–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Bi, L., Lawler, A.M., Antonarakis, S.E., High, K.A., Gearhart, J.D. and Kazazian, h.H. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 10, 119–21 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Doering, C.B., Healey, J.F., Parker, E.T., Barrow, R.T. and Lollar, P. High-level expression of recombinant porcine coagulation factor VIII. J Biol Chem 277, 38345–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Miura, M. et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24, 1095–103 (2006).

    Article  PubMed  Google Scholar 

  22. Rubio, D., Garcia-Castro, J., Martín, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C. and Bernad, A. Spontaneous human adult stem cell transformation. Cancer Res 65, 3035–9 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Emory University Research Committee, the Woodruff Health Sciences Center Woodruff Fund, the Emory/Egelston Children’s Research Center, and the Gene Therapy Initiative at Children’s Healthcare of Atlanta.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Doering, C.B. (2008). Retroviral Modification of Mesenchymal Stem Cells for Gene Therapy of Hemophilia. In: Gene Therapy Protocols. Methods in Molecular Biology™, vol 433. Humana Press. https://doi.org/10.1007/978-1-59745-237-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-237-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-903-1

  • Online ISBN: 978-1-59745-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics