Skip to main content

Methods to Study Transcription-Coupled Repair in Chromatin

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 523))

Abstract

Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair that allows for the enhanced repair of the transcribed strand of active genes. A classical method to study DNA repair in vivo consists in the molecular analysis of UV-induced DNA damages at specific loci. Cells are irradiated with a defined dose of UV light leading to the formation of DNA lesions and incubated in the dark to allow repair. About 90% of the photoproducts consist of cyclobutane pyrimidine dimers, which can be cleaved by the DNA nicking activity of the T4 endonuclease V (T4endoV) repair enzyme. Strand-specific repair in a suitable restriction fragment is determined by alkaline gel electrophoresis followed by Southern blot transfer and indirect end-labeling using a single-stranded probe. Recent approaches have assessed the role of transcription factors in TCR by analyzing RNA polymerase II occupancy on a damaged template by chromatin immunoprecipitation (ChIP). Cells are treated with formaldehyde in vivo to cross-link proteins to DNA and enrichment of a protein of interest is done by subsequent immunoprecipitation. Upon reversal of the protein–DNA cross-links, the amount of coprecipitated DNA fragments can be detected by quantitative PCR. To perform ChIP on UV-damaged templates, we included an in vitro photoreactivation step prior to PCR analysis to ensure that all precipitated DNA fragments serve as substrates for the PCR reaction. Here, we provide a detailed protocol for both the DNA repair analysis and the ChIP approaches to study TCR in chromatin.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hanawalt, P. C. (2001). Controlling the efficiency of excision repair. Mutat. Res. 485, 3–13.

    PubMed  CAS  Google Scholar 

  2. Prakash, S., and Prakash, L. (2000). Nucleotide excision repair in yeast. Mutat. Res. 451, 13–24.

    Article  PubMed  CAS  Google Scholar 

  3. de Boer, J., and Hoeijmakers, J. H. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–60.

    Article  PubMed  Google Scholar 

  4. Verhage, R., Zeeman, A. M., de Groot, N., Gleig, F., Bang, D. D., van de Putte, P., and Brouwer, J. (1994). The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 6135–42.

    PubMed  CAS  Google Scholar 

  5. Mellon, I. (2005). Transcription-coupled repair: a complex affair. Mutat. Res. 577, 155–61.

    Article  PubMed  CAS  Google Scholar 

  6. Gaillard, H., Wellinger, R. E., and Aguilera, A. (2007). A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res. 35, 3893–906.

    Article  PubMed  CAS  Google Scholar 

  7. Laine, J. P., and Egly, J. M. (2006). When transcription and repair meet: a complex system. Trends Genet. 22, 430–6.

    Article  PubMed  CAS  Google Scholar 

  8. Tornaletti, S. (2005). Transcription arrest at DNA damage sites. Mutat. Res. 577, 131–45.

    Article  PubMed  CAS  Google Scholar 

  9. Svejstrup, J. Q. (2002). Mechanisms of transcription-coupled DNA repair. Nat. Rev. Mol. Cell Biol. 3, 21–9.

    Article  PubMed  CAS  Google Scholar 

  10. Venema, J., Mullenders, L. H., Natarajan, A. T., van Zeeland, A. A., and Mayne, L. V. (1990). The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally. Proc. Natl. Acad. Sci. U S A 87, 4707–11.

    Google Scholar 

  11. van Gool, A. J., Verhage, R., Swagemakers, S. M., van de Putte, P., Brouwer, J., Troelstra, C., Bootsma, D., and Hoeijmakers, J. H. (1994). RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13, 5361–9.

    PubMed  Google Scholar 

  12. Li, S., Chen, X., Ruggiero, C., Ding, B., and Smerdon, M. J. (2006). Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements. J. Biol. Chem. 281, 36643–51.

    Article  PubMed  CAS  Google Scholar 

  13. Li, S., Ding, B., Chen, R., Ruggiero, C., and Chen, X. (2006). Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 9430–41.

    Article  PubMed  CAS  Google Scholar 

  14. Li, S., and Smerdon, M. J. (2002). Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J. 21, 5921–9.

    Article  PubMed  CAS  Google Scholar 

  15. Aguilera, A. (2005). Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr. Opin. Cell Biol. 17, 242–50.

    Article  PubMed  CAS  Google Scholar 

  16. Luo, Z., Zheng, J., Lu, Y., and Bregman, D. B. (2001). Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat. Res. 486, 259–74.

    PubMed  CAS  Google Scholar 

  17. Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P., and Huibregtse, J. M. (1999). Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6972–9.

    PubMed  CAS  Google Scholar 

  18. Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L., and Bregman, D. B. (1998). Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–9.

    Article  PubMed  CAS  Google Scholar 

  19. Bregman, D. B., Halaban, R., van Gool, A. J., Henning, K. A., Friedberg, E. C., and Warren, S. L. (1996). UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. U S A 93, 11586–90.

    Google Scholar 

  20. Svejstrup, J. Q. (2003). Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116, 447–51.

    Article  PubMed  CAS  Google Scholar 

  21. Reid, J., and Svejstrup, J. Q. (2004). DNA damage-induced Def1-RNA polymerase II interaction and Def1 requirement for polymerase ubiquitylation in vitro. J. Biol. Chem. 279, 29875–8.

    Article  PubMed  CAS  Google Scholar 

  22. Somesh, B. P., Reid, J., Liu, W. F., Sogaard, T. M., Erdjument-Bromage, H., Tempst, P., and Svejstrup, J. Q. (2005). Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest.. Cell 121, 913–23.

    Article  PubMed  CAS  Google Scholar 

  23. Li, S., Waters, R., and Smerdon, M. J. (2000). Low- and high-resolution mapping of DNA damage at specific sites. Methods 22, 170–9.

    Article  PubMed  CAS  Google Scholar 

  24. Lloyd, R. S. (1999). The initiation of DNA base excision repair of dipyrimidine photoproducts. Prog. Nucleic Acid Res. Mol. Biol. 62, 155–75.

    Article  PubMed  CAS  Google Scholar 

  25. Jansen, L. E., Belo, A. I., Hulsker, R., and Brouwer, J. (2002). Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage. Nucleic Acids Res. 30, 3532–9.

    Article  PubMed  CAS  Google Scholar 

  26. Proietti-De-Santis, L., Drane, P., and Egly, J. M. (2006). Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J. 25, 1915–23.

    Article  PubMed  CAS  Google Scholar 

  27. Orlando, V., and Paro, R. (1993). Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75, 1187–98.

    Article  PubMed  CAS  Google Scholar 

  28. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., and Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604.

    Article  PubMed  CAS  Google Scholar 

  29. Hecht, A., Strahl-Bolsinger, S., and Grunstein, M. (1996). Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383, 92–6.

    Article  PubMed  CAS  Google Scholar 

  30. Hecht, A., and Grunstein, M. (1999). Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 304, 399–414.

    Article  PubMed  CAS  Google Scholar 

  31. Wellinger, R. E., and Thoma, F. (1996). Taq DNA polymerase blockage at pyrimidine dimers. Nucleic Acids Res. 24, 1578–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in AA’s laboratory is funded by grants from the Spanish Ministery of Science and Innovation and from the Junta de Andaluca.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gaillard, H., Wellinger, R.E., Aguilera, A. (2009). Methods to Study Transcription-Coupled Repair in Chromatin. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 523. Humana Press. https://doi.org/10.1007/978-1-59745-190-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-190-1_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-873-7

  • Online ISBN: 978-1-59745-190-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics