Skip to main content

Protein Phosphohistidine Phosphatases of the HP Superfamily

  • Protocol
  • First Online:
Book cover Histidine Phosphorylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2077))

Abstract

Histidine phosphorylation of proteins is increasingly recognised as an important regulatory posttranslational modification in eukaryotes as well as prokaryotes. The HP (Histidine Phosphatase) superfamily, named for a key catalytic His residue, harbors two known groups of protein phosphohistidine phosphatases (PPHPs). The bacterial SixA protein acts as a regulator of His-Asp phosphorelays with two substrates characterized in vitro and/or in vivo. The recently characterized eukaryotic PHPP PGAM5 only has one currently known substrate, NDPK-B, through which it helps regulate T-cell signaling. SixA and PGAM5 appear to share no particular sequence or structural features relating to their PPHP activity suggesting that PHPP activity has arisen independently in different lineages of the HP superfamily. Further members of the HP superfamily may thus harbor (additional) unsuspected PHPP activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rigden DJ (2008) The histidine phosphatase superfamily: structure and function. Biochem J 409:333–348

    Article  CAS  PubMed  Google Scholar 

  2. Fothergill LA, Harkins RN (1982) The amino acid sequence of yeast phosphoglycerate mutase. Proc R Soc Lond B Biol Sci 215:19–44

    Article  CAS  PubMed  Google Scholar 

  3. Lo SC, Hannink M (2006) PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J Biol Chem 281:37893–37903

    Article  CAS  PubMed  Google Scholar 

  4. Takeda K, Komuro Y, Hayakawa T, Oguchi H, Ishida Y, Murakami S, Noguchi T, Kinoshita H, Sekine Y, Iemura S, Natsume T, Ichijo H (2009) Mitochondrial phosphoglycerate mutase 5 uses alternate catalytic activity as a protein serine/threonine phosphatase to activate ASK1. Proc Natl Acad Sci U S A 106:12301–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rigden DJ, Littlejohn JE, Henderson K, Jedrzejas MJ (2003) Structures of phosphate and trivanadate complexes of Bacillus stearothermophilus phosphatase PhoE: structural and functional analysis in the cofactor-dependent phosphoglycerate mutase superfamily. J Mol Biol 325:411–420

    Article  CAS  PubMed  Google Scholar 

  6. Rigden DJ, Walter RA, Phillips SE, Fothergill-Gilmore LA (1999) Sulphate ions observed in the 2.12 A structure of a new crystal form of S. cerevisiae phosphoglycerate mutase provide insights into understanding the catalytic mechanism. J Mol Biol 286:1507–1517

    Article  CAS  PubMed  Google Scholar 

  7. Hamada K, Kato M, Shimizu T, Ihara K, Mizuno T, Hakoshima T (2005) Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay. Genes Cells 10:1–11

    Article  CAS  PubMed  Google Scholar 

  8. Lin K, Li L, Correia JJ, Pilkis SJ (1992) Glu327 is part of a catalytic triad in rat liver fructose-2,6-bisphosphatase. J Biol Chem 267:6556–6562

    CAS  PubMed  Google Scholar 

  9. Rigden DJ (2003) Unexpected catalytic site variation in phosphoprotein phosphatase homologues of cofactor-dependent phosphoglycerate mutase. FEBS Lett 536:77–84

    Article  CAS  PubMed  Google Scholar 

  10. Ostanin K, Van Etten RL (1993) Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J Biol Chem 268:20778–20784

    CAS  PubMed  Google Scholar 

  11. wwPDB consortium (2018) Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 47(D1): D520–D528

    Google Scholar 

  12. Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44:W351–W355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2018) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432

    Article  PubMed Central  CAS  Google Scholar 

  15. Carpino N, Turner S, Mekala D, Takahashi Y, Zang H, Geiger TL, Doherty P, Ihle JN (2004) Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. Immunity 20:37–46

    Article  CAS  PubMed  Google Scholar 

  16. Carpino N, Chen Y, Nassar N, Oh HW (2009) The Sts proteins target tyrosine phosphorylated, ubiquitinated proteins within TCR signaling pathways. Mol Immunol 46:3224–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mikhailik A, Ford B, Keller J, Chen Y, Nassar N, Carpino N (2007) A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol Cell 27:486–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meng TC, Lin MF (1998) Tyrosine phosphorylation of c-ErbB-2 is regulated by the cellular form of prostatic acid phosphatase in human prostate cancer cells. J Biol Chem 273:22096–22104

    Article  CAS  PubMed  Google Scholar 

  19. Lin MF, Clinton GM (1988) The epidermal growth factor receptor from prostate cells is dephosphorylated by a prostate-specific phosphotyrosyl phosphatase. Mol Cell Biol 8:5477–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka M, Kishi Y, Takanezawa Y, Kakehi Y, Aoki J, Arai H (2004) Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett 571:197–204

    Article  CAS  PubMed  Google Scholar 

  22. Davies L, Anderson IP, Turner PC, Shirras AD, Rees HH, Rigden DJ (2007) An unsuspected ecdysteroid/steroid phosphatase activity in the key T-cell regulator, Sts-1: surprising relationship to insect ecdysteroid phosphate phosphatase. Proteins 67:720–731

    Article  CAS  PubMed  Google Scholar 

  23. Fuhs SR, Hunter T (2017) pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol 45:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ogino T, Matsubara M, Kato N, Nakamura Y, Mizuno T (1998) An Escherichia coli protein that exhibits phosphohistidine phosphatase activity towards the HPt domain of the ArcB sensor involved in the multistep His-Asp phosphorelay. Mol Microbiol 27:573–585

    Article  CAS  PubMed  Google Scholar 

  25. Panda S, Srivastava S, Li Z, Vaeth M, Fuhs SR, Hunter T, Skolnik EY (2016) Identification of PGAM5 as a mammalian protein histidine phosphatase that plays a central role to negatively regulate CD4(+) T cells. Mol Cell 63:457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mizuno T (1998) His-Asp phosphotransfer signal transduction. J Biochem 123:555–563

    Article  CAS  PubMed  Google Scholar 

  27. Sakakibara H, Taniguchi M, Sugiyama T (2000) His-Asp phosphorelay signaling: a communication avenue between plants and their environment. Plant Mol Biol 42:273–278

    Article  CAS  PubMed  Google Scholar 

  28. Mueller JP, Sonenshein AL (1992) Role of the Bacillus subtilis gsiA gene in regulation of early sporulation gene expression. J Bacteriol 174:4374–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohlsen KL, Grimsley JK, Hoch JA (1994) Deactivation of the sporulation transcription factor Spo0A by the Spo0E protein phosphatase. Proc Natl Acad Sci U S A 91:1756–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiba T, Aoki K, Sakakibara H, Mizuno T (2004) Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol 45:1063–1077

    Article  CAS  PubMed  Google Scholar 

  31. Horak J, Grefen C, Berendzen KW, Hahn A, Stierhof YD, Stadelhofer B, Stahl M, Koncz C, Harter K (2008) The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biol 8:77–2229-8-77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schulte JE, Goulian M (2018) The phosphohistidine phosphatase SixA targets a phosphotransferase system. MBio 9. https://doi.org/10.1128/mBio.01666-18

  33. Pfluger-Grau K, Gorke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205–214

    Article  PubMed  CAS  Google Scholar 

  34. Chaikuad A, Filippakopoulos P, Marcsisin SR, Picaud S, Schroder M, Sekine S, Ichijo H, Engen JR, Takeda K, Knapp S (2017) Structures of PGAM5 provide insight into active site plasticity and multimeric assembly. Structure 25:1089–1099.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato M, Mizuno T, Shimizu T, Hakoshima T (1997) Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell 88:717–723

    Article  CAS  PubMed  Google Scholar 

  36. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strickland M, Stanley AM, Wang G, Botos I, Schwieters CD, Buchanan SK, Peterkofsky A, Tjandra N (2016) Structure of the NPr:EIN(Ntr) complex: mechanism for specificity in paralogous phosphotransferase systems. Structure 24:2127–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hakoshima T, Ichihara H (2007) Structure of SixA, a histidine protein phosphatase of the ArcB histidine-containing phosphotransfer domain in Escherichia coli. Methods Enzymol 422:288–304

    Article  CAS  PubMed  Google Scholar 

  39. Nishino K, Hsu FF, Turk J, Cromie MJ, Wosten MM, Groisman EA (2006) Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol Microbiol 61:645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D (2017) New additions to the ClusPro server motivated by CAPRI. Proteins 85:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lathe WC,3rd, Snel B, Bork P (2000) Gene context conservation of a higher order than operons. Trends Biochem Sci 25:474–479

    Article  Google Scholar 

  42. Skunca N, Dessimoz C (2015) Phylogenetic profiling: how much input data is enough? PLoS One 10:e0114701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C (2018) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  PubMed Central  CAS  Google Scholar 

  44. Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41:98–107

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Wei Z, Liu L, Cheng Z, Lin Y, Ji F, Gong W (2005) Crystal structure of human B-type phosphoglycerate mutase bound with citrate. Biochem Biophys Res Commun 331:1207–1215

    Article  CAS  PubMed  Google Scholar 

  46. Durany N, Joseph J, Cruz-Sanchez FF, Carreras J (1997) Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and creatine kinase activity and isoenzymes in human brain tumours. Br J Cancer 76:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hammond PW, Alpin J, Rise CE, Wright M, Kreider BL (2001) In vitro selection and characterization of Bcl-X(L)-binding proteins from a mix of tissue-specific mRNA display libraries. J Biol Chem 276:20898–20906

    Article  CAS  PubMed  Google Scholar 

  48. Lo SC, Hannink M (2008) PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp Cell Res 314:1789–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L, Chao B, Zhang Y, Dawson VL, Dawson TM, Lenardo M (2014) Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat Commun 5:4930

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi A, Ishikawa H, Furuoka M, Yokozeki M, Matsuda N, Tanimura S, Takeda K (2019) Cleaved PGAM5 is released from mitochondria depending on proteasome-mediated rupture of the outer mitochondrial membrane during mitophagy. J Biochem 165:19–25

    Article  PubMed  Google Scholar 

  51. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  CAS  PubMed  Google Scholar 

  52. Ishida Y, Sekine Y, Oguchi H, Chihara T, Miura M, Ichijo H, Takeda K (2012) Prevention of apoptosis by mitochondrial phosphatase PGAM5 in the mushroom body is crucial for heat shock resistance in Drosophila melanogaster. PLoS One 7:e30265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lenhausen AM, Wilkinson AS, Lewis EM, Dailey KM, Scott AJ, Khan S, Wilkinson JC (2016) Apoptosis inducing factor binding protein PGAM5 triggers mitophagic cell death that is inhibited by the ubiquitin ligase activity of X-linked inhibitor of apoptosis. Biochemistry 55:3285–3302

    Article  CAS  PubMed  Google Scholar 

  54. Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, Duan L, Wang X, Liu L, Liu X, Shen Y, Zhu Y, Chen Q (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54:362–377

    Article  CAS  PubMed  Google Scholar 

  55. Lu W, Sun J, Yoon JS, Zhang Y, Zheng L, Murphy E, Mattson MP, Lenardo MJ (2016) Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PLoS One 11:e0147792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, Liu L, Chen Q (2014) The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy 10:1712–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML (2009) The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 329:51–62

    Article  CAS  PubMed  Google Scholar 

  58. Attwood PV, Wieland T (2015) Nucleoside diphosphate kinase as protein histidine kinase. Naunyn Schmiedebergs Arch Pharmacol 388:153–160

    Article  CAS  PubMed  Google Scholar 

  59. Srivastava S, Li Z, Ko K, Choudhury P, Albaqumi M, Johnson AK, Yan Y, Backer JM, Unutmaz D, Coetzee WA, Skolnik EY (2006) Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell 24:665–675

    Article  CAS  PubMed  Google Scholar 

  60. Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y, Ishihara N, Takeda K, Ichijo H (2012) Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem 287:34635–34645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srivastava S, Zhdanova O, Di L, Li Z, Albaqumi M, Wulff H, Skolnik EY (2008) Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc Natl Acad Sci U S A 105:14442–14446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilkins JM, McConnell C, Tipton PA, Hannink M (2014) A conserved motif mediates both multimer formation and allosteric activation of phosphoglycerate mutase 5. J Biol Chem 289:25137–25148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Webb PA, Perisic O, Mendola CE, Backer JM, Williams RL (1995) The crystal structure of a human nucleoside diphosphate kinase, NM23-H2. J Mol Biol 251:574–587

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Rigden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rigden, D.J. (2020). Protein Phosphohistidine Phosphatases of the HP Superfamily. In: Eyers, C. (eds) Histidine Phosphorylation. Methods in Molecular Biology, vol 2077. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9884-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9884-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9883-8

  • Online ISBN: 978-1-4939-9884-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics