Skip to main content

Genetic Manipulations of Staphylococcal Chromosomal DNA

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2069))

Abstract

Performing genetic manipulation is often key to understanding bacterial gene function. In this chapter, we present the method of allelic exchange using temperature-sensitive plasmids to generate mutations in Staphylococcus, including single-nucleotide mutations, insertions, and gene deletions. In addition, this chapter summarizes other key genetic technologies used for the manipulation of S. aureus, including the CRISPR/Cas9 system and complementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun F, Cho H, Jeong DW, Li C, He C, Bae T (2010) Aureusimines in Staphylococcus aureus are not involved in virulence. PLoS One 5(12):e15703. https://doi.org/10.1371/journal.pone.0015703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3(2). https://doi.org/10.1128/mBio.00277-11

  3. Bae T, Schneewind O (2006) Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55(1):58–63. https://doi.org/10.1016/j.plasmid.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  4. Bose JL, Fey PD, Bayles KW (2013) Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus. Appl Environ Microbiol 79(7):2218–2224. https://doi.org/10.1128/AEM.00136-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee CY, Buranen SL, Ye ZH (1991) Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103(1):101–105

    Article  CAS  Google Scholar 

  6. Luong TT, Lee CY (2007) Improved single-copy integration vectors for Staphylococcus aureus. J Microbiol Methods 70(1):186–190. https://doi.org/10.1016/j.mimet.2007.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rollof J, Braconier JH, Soderstrom C, Nilsson-Ehle P (1988) Interference of Staphylococcus aureus lipase with human granulocyte function. Eur J Clin Microbiol Infect Dis 7(4):505–510

    Article  CAS  Google Scholar 

  8. Rollof J, Vinge E, Nilsson-Ehle P, Braconier JH (1992) Aggregation of human granulocytes by Staphylococcus aureus lipase. J Med Microbiol 36(1):52–55. https://doi.org/10.1099/00222615-36-1-52

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Yoong P, Ram G, Torres VJ, Novick RP (2014) Single-copy vectors for integration at the SaPI1 attachment site for Staphylococcus aureus. Plasmid 76:1–7. https://doi.org/10.1016/j.plasmid.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP (2004) Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 70(10):6076–6085. https://doi.org/10.1128/AEM.70.10.6076-6085.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruzin A, Lindsay J, Novick RP (2001) Molecular genetics of SaPI1–a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41(2):365–377

    Article  CAS  Google Scholar 

  12. Burcham ZM, Hood JA, Pechal JL, Krausz KL, Bose JL, Schmidt CJ, Benbow ME, Jordan HR (2016) Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Sci Int 264:63–69. https://doi.org/10.1016/j.forsciint.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  13. Kreiswirth BN, Lofdahl S, Betley MJ, O’Reilly M, Schlievert PM, Bergdoll MS, Novick RP (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305(5936):709–712

    Article  CAS  Google Scholar 

  14. Chen W, Zhang Y, Yeo WS, Bae T, Ji Q (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. J Am Chem Soc 139(10):3790–3795. https://doi.org/10.1021/jacs.6b13317

    Article  CAS  PubMed  Google Scholar 

  15. Dong X, Jin Y, Ming D, Li B, Dong H, Wang L, Wang T, Wang D (2017) CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. J Microbiol Methods 139:79–86. https://doi.org/10.1016/j.mimet.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  16. Krute CN, Krausz KL, Markiewicz MA, Joyner JA, Pokhrel S, Hall PR, Bose JL (2016) Generation of a stable plasmid for in vitro and in vivo studies of Staphylococcus. Appl Environ Microbiol 82:6859. https://doi.org/10.1128/AEM.02370-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sau S, Sun J, Lee CY (1997) Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus. J Bacteriol 179(5):1614–1621

    Article  CAS  Google Scholar 

  18. Arnaud M, Chastanet A, Debarbouille M (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70(11):6887–6891. https://doi.org/10.1128/AEM.70.11.6887-6891.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sullivan MA, Yasbin RE, Young FE (1984) New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29(1–2):21–26

    Article  CAS  Google Scholar 

  20. Geisinger E, George EA, Chen J, Muir TW, Novick RP (2008) Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J Biol Chem 283(14):8930–8938. https://doi.org/10.1074/jbc.M710227200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Austin, C.M., Bose, J.L. (2020). Genetic Manipulations of Staphylococcal Chromosomal DNA. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 2069. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9849-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9849-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9848-7

  • Online ISBN: 978-1-4939-9849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics