Skip to main content

Microanatomy Relevant to Intrathecal Drug Delivery

  • Protocol
  • First Online:
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2059))

Abstract

This chapter describes the microanatomy of the spinal cord that is relevant to intrathecal drug delivery started with covering of the spinal cord that are pierced to enter the intrathecal space. The dural sac is mostly constituted by the outer layer of dura and the inner layer called arachnoid membrane, which regulates diffusion of drugs into the intrathecal space. The pia matter surrounding the spinal cord is a permeable structure allowing the passage of drugs through intercellular spaces. The relationship between nerve roots, CSF, and subarachnoid catheters determines the passage of an intrathecal catheter which can cause damage to nerve roots and spinal cord. Multiple factors may be involved in the mechanisms of drug diffusion across the membranes of the spinal cord, as well as in their dilution with the CSF, which will lead to the final drug distribution and availability at nerve roots and the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reina MA, Pulido P, López A (2007) Human dural sac. Rev Arg Anestesiol 65:167–184. Spanish

    Google Scholar 

  2. Reina MA, Oliva A, Carrera A, Diamantopoulos J, Prats-Galino A (2015) Spinal dural sac, nerve root cuffs, rootless and nerve roots. In: Reina MA (ed) Atlas of functional anatomy of regional anesthesia and pain medicine. Springer, New York, pp 385–410

    Google Scholar 

  3. Reina MA, López A, De Andrés JA (1999) Variation of human dura mater thickness. Rev Esp Anestesiol Reanim 46:344–349

    CAS  PubMed  Google Scholar 

  4. Reina MA, López A, Dittmann M, De Andrés JA (1996) Structure of human dura mater thickness by scanning electron microscopy. Rev Esp Anestesiol Reanim 43:135–137

    CAS  PubMed  Google Scholar 

  5. Reina MA, Dittmann M, López A, van Zundert A (1997) New perspectives in the microscopic structure of human dura mater in the dorso lumbar region. Reg Anesth 22:161–166

    CAS  PubMed  Google Scholar 

  6. Dittmann M, Reina MA, López A (1998) Neue ergebnisse bei der darstellung der dura mater spinalis mittles rasterelektronenmikroskopie. Anaesthesist 47:409–413

    Article  CAS  Google Scholar 

  7. Reina MA, López A, Dittmann M, De Andrés JA (1996) External and internal surface of human dura mater by scanning electron microscopy. Rev Esp Anestesiol Reanim 43:130–134

    CAS  PubMed  Google Scholar 

  8. Reina MA, Prats-Galino A, Sola RG, Puigdellívol-Sánchez A, Arriazu Navarro R, De Andrés JA (2010) Structure of the arachnoid layer of the human spinal meninges: a barrier that regulates dural sac permeability. Rev Esp Anestesiol Reanim 57:486–492

    Article  CAS  Google Scholar 

  9. Reina MA, Pulido P, García De Sola R (2015) Ultrastructure of spinal arachnoid layer. In: Reina MA (ed) Atlas of functional anatomy of regional anesthesia and pain medicine. Springer, New York, pp 435–454

    Google Scholar 

  10. Reina MA, Villanueva MC, López A (2008) Human trabecular arachnoids, pia mater and spinal anesthesia. Rev Arg Anestesiol 66:111–133

    Google Scholar 

  11. Reina MA, López A, De Andrés JA (1999) Hypothesis on the anatomical bases of cauda equine syndrome and transitory radicular irritation syndrome post spinal anesthesia. Rev Esp Anestesiol Reanim 46:99–105

    CAS  PubMed  Google Scholar 

  12. Reina MA, Machés F, López A, De Andrés JA (2008) The ultrastructure of the spinal arachnoid in humans and its impact on spinal anesthesia, cauda equina syndrome and transient neurological syndrome. Tech Reg Anesth Pain Management 12:153–160

    Article  Google Scholar 

  13. Kershner DE, Binhammer RT (2002) Lumbar intrathecal ligaments. Clin Anat 15:82–87

    Article  Google Scholar 

  14. Di Chiro G, Timins EL (1974) Supine myelography and the septum posticum. Radiology 111:319–327

    Article  CAS  Google Scholar 

  15. Reina MA, De Leon Casasola O, Villanueva MC, López A, Maches F, De Andrés JA (2004) Ultrastructural findings in human spinal pia mater in relation to subarachnoid anesthesia. Anesth Analg 98:1479–1485

    Article  Google Scholar 

  16. Machés F, Reina MA, De León Casasola O (2015) Ultrastructure of spinal pia mater. In: Reina MA (ed) Atlas of functional anatomy of regional anesthesia and pain medicine. Springer, New York, pp 499–522

    Google Scholar 

  17. Reina MA, López García A, de Andrés JA (1998) Anatomical description of a natural perforation present in the human lumbar pia mater. Rev Esp Anestesiol Reanim 45:4–7

    CAS  PubMed  Google Scholar 

  18. Merchant RE, Low FN (1979) Scanning electron microscopy of the subarachnoid space in the dog: evidence for a non-hematogeneous origin of the subarachnoid macrophages. Am J Anat 156:183–206

    Article  CAS  Google Scholar 

  19. Bernards CM (1999) Epidural and intrathecal drug movement. In: Yaksh TN (ed) Spinal drug delivery. Elsevier, Amsterdam, pp 239–269

    Google Scholar 

  20. Artru AA (1999) Spinal cerebrospinal fluid chemistry and physiology. In: Yaksh TN (ed) Spinal drug delivery. Elsevier, Amsterdam, pp 177–237

    Google Scholar 

  21. Quencer RM, Post MJD, Hinks RS (1990) Cine MR in the evaluation of normal and abnormal CSF flow. Intracranial and intraspinal studies. Neuroradiology 32:371–391

    Article  CAS  Google Scholar 

  22. Hogan QH, Prost R, Kulier A et al (1996) Magnetic resonance imaging of cerebrospinal fluid volume and the influence of body habitus and abdominal pressure. Anesthesiology 84:1341–1349

    Article  CAS  Google Scholar 

  23. Higuchi H, Hirata J, Adachi Y, Kazama T (2004) Influence of lumbosacral cerebrospinal fluid density, velocity, volume and on extent and duration of plain bupivacaine spinal anesthesia. Anesthesiology 100:106–114

    Article  CAS  Google Scholar 

  24. Sullivan JT, Grouper S, Walker MT, Parrish TB, McCarthy RJ, Wong CA (2006) Lumbosacral cerebrospinal fluid volume in humans using three-dimensional magnetic resonance imaging. Anesth Analg 103:1306–1310

    Article  Google Scholar 

  25. Edsbagge M, Starck G, Zetterberg H, Ziegelitz D, Wikkelso C (2011) Spinal CSF volume in healthy elderly individuals. Clin Anat 24:733–740

    Article  CAS  Google Scholar 

  26. Puigdellívol-Sánchez A, Reina MA, San-Molina J, Escobar JM, Castedo J, Prats-Galino A (2015) Threshold selection criteria for quantification of lumbosacral cerebrospinal fluid and root volumes from MRI. J Neuroimaging 25:488–493

    Article  Google Scholar 

  27. Puigdellívol-Sánchez A, Prats-Galino A, Reina MA, Machés F, Hernández JM, De Andrés J, van Zundert A (2011) Tridimensional magnetic resonance image of structures enclosed in the spinal canal relevant to anesthetists and estimation of the lumbosacral CSF volume. Acta Anaesth Belg 62:37–45

    PubMed  Google Scholar 

  28. Alperin N, Bagci AM, Lee SH, Lam BL (2016) Automated quantitation of spinal CSF volume and measurement of craniospinal CSF redistribution following lumbar withdrawal in idiopathic intracranial hypertension. AJNR Am J Neuroradiol 37:1957–1963

    Article  CAS  Google Scholar 

  29. Chazen JL, Dyke JP, Holt RW, Horky L, Pauplis RA, Hesterman JY, Mozley DP, Verma A (2017) Automated segmentation of MR imaging to determine normative central nervous system cerebrospinal fluid volumes in healthy volunteers. Clin Imaging 43:132–135

    Article  Google Scholar 

  30. Prats-Galino A, Reina MA, Puigdellívol-Sánchez A, Juanes Méndez JA, De Andrés JA, Collier CB (2012) Cerebrospinal fluid volume and nerve root vulnerability during lumbar puncture or spinal anaesthesia at different vertebral levels. Anaesth Intensive Care 40:643–647

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Reina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reina, M.A., Boezaart, A., De Andres-Serrano, C., Rubio-Haro, R., De Andrés, J. (2020). Microanatomy Relevant to Intrathecal Drug Delivery. In: Jain, K. (eds) Drug Delivery Systems. Methods in Molecular Biology, vol 2059. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9798-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9798-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9797-8

  • Online ISBN: 978-1-4939-9798-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics