Skip to main content

High-Content Analysis of Mitochondrial Function in iPSC-Derived Neurons

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1994))

Abstract

Mitochondrial dysfunction is linked to many neurological diseases; therefore, the ability to measure mitochondrial function is of great use for researching disease and testing potential therapeutics. Here we describe a high-content assay to simultaneously measure mitochondrial membrane potential, morphology and cell viability in iPSC-derived neurons. Neurons are seeded into plates suitable for fluorescent microscopy, stained with the mitochondrial membrane potential-dependent dye TMRM, cytoplasmic dye Calcein AM, and nuclear stain Hoechst 33342. Images are acquired in live cells and analyzed using automated image analysis software.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 55:101–114. https://doi.org/10.1016/j.mcn.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  2. Dhillon VS, Fenech M (2014) Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Mutat Res Rev Mutat Res 759:1–13. https://doi.org/10.1016/j.mrrev.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Hroudova J, Singh N, Fisar Z (2014) Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014:175062. https://doi.org/10.1155/2014/175062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26(19):5256–5264. https://doi.org/10.1523/JNEUROSCI.0984-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grskovic M, Javaherian A, Strulovici B, Daley G (2011) Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov:1–15. https://doi.org/10.1038/nrd3577

    Article  CAS  PubMed  Google Scholar 

  6. Khurana V, Tardiff DF, Chung CY, Lindquist S (2015) Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol 11(6):339–350. https://doi.org/10.1038/nrneurol.2015.79

    Article  CAS  PubMed  Google Scholar 

  7. Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration. J Clin Invest 123(12):5371–5388. https://doi.org/10.1172/JCI70911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalmar B, Innes A, Wanisch K, Kolaszynska AK, Pandraud A, Kelly G, Abramov AY, Reilly MM, Schiavo G, Greensmith L (2017) Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie tooth disease. Hum Mol Genet 26(17):3313–3326. https://doi.org/10.1093/hmg/ddx216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ludtmann MH, Angelova PR, Ninkina NN, Gandhi S, Buchman VL, Abramov AY (2016) Monomeric alpha-Synuclein exerts a physiological role on brain ATP synthase. J Neurosci 36(41):10510–10521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, Wood NW, Willems PH, Smeitink JA, Cookson MR, Bandmann O (2008) Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 64(5):555–565. https://doi.org/10.1002/ana.21492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Little D, Luft C, Mosaku O, Lorvelle M, Yao Z, Paillusson S, Kriston-Vizi J, Gandhi S, Abramov AY, Ketteler R, Devine MJ, Gissen P (2018) A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA. Sci Rep. https://doi.org/10.1038/s41598-018-27058-0 SREP-18-02363

  12. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312. https://doi.org/10.1042/BJ20110162

    Article  CAS  PubMed  Google Scholar 

  13. Koopman WJ, Distelmaier F, Esseling JJ, Smeitink JA, Willems PH (2008) Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. Methods 46(4):304–311

    Article  CAS  PubMed  Google Scholar 

  14. Nicholls DG (2012) Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol 810:119–133. https://doi.org/10.1007/978-1-61779-382-0_8

    Article  CAS  PubMed  Google Scholar 

  15. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287. https://doi.org/10.1146/annurev-genet-110410-132529

    Article  CAS  PubMed  Google Scholar 

  16. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343. https://doi.org/10.1038/nature12985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19(2):63–80. https://doi.org/10.1038/nrn.2017.170

    Article  CAS  PubMed  Google Scholar 

  18. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180. https://doi.org/10.1093/bioinformatics/btr095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kitami T, Logan DJ, Negri J, Hasaka T, Tolliday NJ, Carpenter AE, Spiegelman BM, Mootha VK (2012) A chemical screen probing the relationship between mitochondrial content and cell size. PLoS One 7(3):e33755. https://doi.org/10.1371/journal.pone.0033755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Little .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Little, D., Luft, C., Mosaku, O., Ketteler, R., Devine, M.J., Gissen, P. (2019). High-Content Analysis of Mitochondrial Function in iPSC-Derived Neurons. In: Mandenius, CF., Ross, J. (eds) Cell-Based Assays Using iPSCs for Drug Development and Testing. Methods in Molecular Biology, vol 1994. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9477-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9477-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9476-2

  • Online ISBN: 978-1-4939-9477-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics