Skip to main content

Analysis of High-Dimensional Phenotype Data Generated by Mass Cytometry or High-Dimensional Flow Cytometry

  • Protocol
  • First Online:
Mass Cytometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1989))

Abstract

Recent advances in single cell multi-omics methodologies significantly expand our understanding of cellular heterogeneity, particularly in the field of immunology. Today’s state-of-the-art flow and mass cytometers can detect up to 50 parameters to comprehensively characterize the identity and function of individual cells within a heterogeneous population. As a consequence, the increasing number of parameters that can be detected simultaneously also introduces substantial complexity for the experimental setup and downstream data processing. However, this challenge in data analysis fostered the development of novel bioinformatic tools to fully exploit the high-dimensional data. These tools will eventually replace cumbersome serial, manual gating in the two-dimensional space driven by a priori knowledge, which still represents the gold standard in flow cytometric analysis, to meet the needs of the today’s immunologist. To this end, we provide guidelines for a high-dimensional cytometry workflow including experimental setup, panel design, fluorescent spillover compensation, and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen H, Lau MC, Wong MT et al (2016) Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput Biol 12(9):e1005112. https://doi.org/10.1371/journal.pcbi.1005112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sander J, Schmidt SV, Cirovic B et al (2017) Cellular differentiation of human monocytes is regulated by time-dependent interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 47(6):1051–1066. e1012. https://doi.org/10.1016/j.immuni.2017.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finak G, Perez JM, Weng A et al (2010) Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinformatics 11:546. https://doi.org/10.1186/1471-2105-11-546

    Article  PubMed  PubMed Central  Google Scholar 

  4. Becher B, Schlitzer A, Chen J et al (2014) High-dimensional analysis of the murine myeloid cell system. Nat Immunol 15(12):1181–1189. https://doi.org/10.1038/ni.3006

    Article  CAS  PubMed  Google Scholar 

  5. Levine JH, Simonds EF, Bendall SC et al (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162(1):184–197. https://doi.org/10.1016/j.cell.2015.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89(12):1084–1096. https://doi.org/10.1002/cyto.a.23030

    Article  CAS  PubMed  Google Scholar 

  7. Amir el AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552. https://doi.org/10.1038/nbt.2594

    Article  CAS  Google Scholar 

  8. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  9. Haghverdi L, Buettner F, Theis FJ (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31(18):2989–2998. https://doi.org/10.1093/bioinformatics/btv325

    Article  CAS  PubMed  Google Scholar 

  10. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323. https://doi.org/10.1126/science.290.5500.2319

    Article  CAS  PubMed  Google Scholar 

  11. Haghverdi L, Buttner M, Wolf FA et al (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13:845. https://doi.org/10.1038/nmeth.3971

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen R, Perfetto S, Mahnke YD et al (2013) Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytometry A 83(3):306–315. https://doi.org/10.1002/cyto.a.22251

    Article  PubMed  PubMed Central  Google Scholar 

  13. Parks D (2004) Presented at the XXII congress of the International Society for Analytical Cytology. Montpellier, France

    Google Scholar 

  14. Fletez-Brant K, Spidlen J, Brinkman RR et al (2016) flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 89(5):461–471. https://doi.org/10.1002/cyto.a.22837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Meur N, Rossini A, Gasparetto M et al (2007) Data quality assessment of ungated flow cytometry data in high throughput experiments. Cytometry A 71(6):393–403. https://doi.org/10.1002/cyto.a.20396

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hahne F, LeMeur N, Brinkman RR et al (2009) flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106. https://doi.org/10.1186/1471-2105-10-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finak G, Frelinger J, Jiang W et al (2014) OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 10(8):e1003806. https://doi.org/10.1371/journal.pcbi.1003806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malek M, Taghiyar MJ, Chong L et al (2015) flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31(4):606–607. https://doi.org/10.1093/bioinformatics/btu677

    Article  CAS  PubMed  Google Scholar 

  19. Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891. https://doi.org/10.1038/nbt.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Gassen S, Callebaut B, Van Helden MJ et al (2015) FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87(7):636–645. https://doi.org/10.1002/cyto.a.22625

    Article  PubMed  Google Scholar 

  21. Bruggner RV, Bodenmiller B, Dill DL et al (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111(26):E2770–E2777. https://doi.org/10.1073/pnas.1408792111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O'Neill K, Jalali A, Aghaeepour N et al (2014) Enhanced flowType/RchyOptimyx: a BioConductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30(9):1329–1330. https://doi.org/10.1093/bioinformatics/btt770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bendall SC, Davis KL, Amir el AD et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157(3):714–725. https://doi.org/10.1016/j.cell.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pyne S, Hu X, Wang K et al (2009) Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci U S A 106(21):8519–8524. https://doi.org/10.1073/pnas.0903028106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aghaeepour N, Nikolic R, Hoos HH et al (2011) Rapid cell population identification in flow cytometry data. Cytometry A 79(1):6–13. https://doi.org/10.1002/cyto.a.21007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qian Y, Wei C, Eun-Hyung Lee F et al (2010) Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom 78(Suppl 1):S69–S82. https://doi.org/10.1002/cyto.b.20554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monaco G, Chen H, Poidinger M et al (2016) flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics 32(16):2473–2480. https://doi.org/10.1093/bioinformatics/btw191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schlitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cirovic, B., Katzmarski, N., Schlitzer, A. (2019). Analysis of High-Dimensional Phenotype Data Generated by Mass Cytometry or High-Dimensional Flow Cytometry. In: McGuire, H., Ashhurst, T. (eds) Mass Cytometry. Methods in Molecular Biology, vol 1989. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9454-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9454-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9453-3

  • Online ISBN: 978-1-4939-9454-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics