Skip to main content
Book cover

Lymphoma pp 371–381Cite as

Phosphoproteomic Analysis of Signaling Pathways in Lymphomas

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1956))

Abstract

Cell fate decisions are controlled by complex signal transduction processes that transmit information via posttranslational protein modifications such as phosphorylation. In lymphoma, as in other cancer types, these signaling networks are often dysregulated and thus contribute to malignant transformation and tumor maintenance. For example, B-cell antigen receptor signals are rewired in certain lymphoma types, such as diffuse large B-cell lymphomas, to promote cell growth and survival of the malignant cell clones. Hence, global elucidation of such intricate signaling networks is important for an improved understanding of the biology of these tumors and the identification of target proteins for therapeutic purposes.

We describe here a mass spectrometry-based phosphoproteomic approach for characterization of intracellular signaling events and their dynamics. This integrated phosphoproteomic technology combines phosphopeptide enrichment and fractionation with liquid-chromatography-coupled mass spectrometry for the site-specific mapping and quantification of thousands of phosphorylation events in a given cell type. Such global signaling analyses provide valuable insights into oncogenic signaling networks and can inform drug development efforts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kurosaki T, Shinohara H, Baba Y (2010) B cell signaling and fate decision. Annu Rev Immunol 28:21–55. https://doi.org/10.1146/annurev.immunol.021908.132541

    Article  CAS  PubMed  Google Scholar 

  2. Shaffer AL 3rd, Young RM, Staudt LM (2012) Pathogenesis of human B cell lymphomas. Annu Rev Immunol 30:565–610. https://doi.org/10.1146/annurev-immunol-020711-075027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duhren-von Minden M, Ubelhart R, Schneider D et al (2012) Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489(7415):309–312. https://doi.org/10.1038/nature11309

    Article  CAS  PubMed  Google Scholar 

  4. Davis RE, Ngo VN, Lenz G et al (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463(7277):88–92. https://doi.org/10.1038/nature08638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Young RM, Wu T, Schmitz R et al (2015) Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc Natl Acad Sci U S A 112(44):13447–13454. https://doi.org/10.1073/pnas.1514944112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmitz R, Wright GW, Huang DW et al (2018) Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 378(15):1396–1407. https://doi.org/10.1056/NEJMoa1801445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmitz R, Young RM, Ceribelli M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120. https://doi.org/10.1038/nature11378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corso J, Pan KT, Walter R et al (2016) Elucidation of tonic and activated B-cell receptor signaling in Burkitt’s lymphoma provides insights into regulation of cell survival. Proc Natl Acad Sci U S A 113(20):5688–5693. https://doi.org/10.1073/pnas.1601053113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Young RM, Staudt LM (2013) Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 12(3):229–243. https://doi.org/10.1038/nrd3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sacco F, Humphrey SJ, Cox J et al (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7:13250. https://doi.org/10.1038/ncomms13250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beausoleil SA, Jedrychowski M, Schwartz D et al (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101(33):12130–12135. https://doi.org/10.1073/pnas.0404720101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singer D, Kuhlmann J, Muschket M et al (2010) Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase. Anal Chem 82(15):6409–6414. https://doi.org/10.1021/ac100473k

    Article  CAS  PubMed  Google Scholar 

  13. Nilsson CL (2012) Advances in quantitative phosphoproteomics. Anal Chem 84(2):735–746. https://doi.org/10.1021/ac202877y

    Article  CAS  PubMed  Google Scholar 

  14. Bantscheff M, Lemeer S, Savitski MM et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bionanal Chem 404(4):939–965. https://doi.org/10.1007/s00216-012-6203-4

    Article  CAS  Google Scholar 

  15. Junger MA, Aebersold R (2014) Mass spectrometry-driven phosphoproteomics: patterning the systems biology mosaic. Wiley Interdiscip Rev Dev Biol 3(1):83–112. https://doi.org/10.1002/wdev.121

    Article  CAS  PubMed  Google Scholar 

  16. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  17. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  18. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  19. Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386. https://doi.org/10.1074/mcp.M200025-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Oellerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Häupl, B., Urlaub, H., Oellerich, T. (2019). Phosphoproteomic Analysis of Signaling Pathways in Lymphomas. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 1956. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9151-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9151-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9150-1

  • Online ISBN: 978-1-4939-9151-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics