Skip to main content

Isolation and Generation of Osteoclasts

  • Protocol
  • First Online:
Book cover Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

Abstract

This chapter describes the isolation, culture, and staining of osteoclasts. The key advantages of this assay are that it allows direct measurement of osteoclast number, bone resorption, as well as yielding good quantities of osteoclasts at defined stages of formation for molecular analysis. An additional focus of this chapter will be the generation of osteoclasts from less conventional animal species and cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cappariello A, Maurizi A, Veeriah V, Teti A (2014) The great beauty of the osteoclast. Arch Biochem Biophys 558:70–78

    Article  CAS  Google Scholar 

  2. Walker DG (1975) Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med 142:651–663

    Article  CAS  Google Scholar 

  3. Marks SC Jr, Walker DG (1981) The hematogenous origin of osteoclasts: experimental evidence from osteopetrotic (microphthalmic) mice treated with spleen cells from beige mouse donors. Am J Anat 161:1–10

    Article  Google Scholar 

  4. Pivetta E, Wassermann B, Bulian P, Steffan A, Colombatti A, Polesel J, Spessotto P (2015) Functional osteoclastogenesis: the baseline variability in blood donor precursors is not associated with age and gender. Oncotarget 6:31889–31900

    Article  Google Scholar 

  5. Takahashi N, Maeda K, Ishihara A, Uehara S, Kobayashi Y (2011) Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci (Landmark Ed) 16:21–30

    Article  CAS  Google Scholar 

  6. Zhang C, Dou CE, Xu J, Dong S (2014) DC-STAMP, the key fusion-mediating molecule in osteoclastogenesis. J Cell Physiol 229:1330–1335

    Article  CAS  Google Scholar 

  7. Rucci N, Teti A (2016) The "love-hate" relationship between osteoclasts and bone matrix. Matrix Biol 52–54:176–190

    Article  Google Scholar 

  8. Holtrop ME (1975) The ultrastructure of bone. Ann Clin Lab Sci 5:264–271

    CAS  PubMed  Google Scholar 

  9. Holtrop ME, King GJ (1977) The ultrastructure of the osteoclast and its functional implications. Clin Orthop Relat Res (123):177–196

    Google Scholar 

  10. Nelson RL, Bauer GE (1977) Isolation of osteoclasts by velocity sedimentation at unit gravity. Calcif Tissue Res 22:303–313

    Article  CAS  Google Scholar 

  11. de Bernard B, Stagni N, Camerotto R, Vittur F, Zanetti M, Zambonin Zallone A, Teti A (1980) Influence of calcium depletion on medullary bone of laying hens. Calcif Tissue Int 32:221–228

    Article  Google Scholar 

  12. Zambonin Zallone A, Teti A (1981) The osteoclasts of hen medullary bone under hypocalcaemic conditions. Anat Embryol 162:379–392

    Article  CAS  Google Scholar 

  13. Zambonin Zallone A, Teti A, Primavera MV (1982) Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol 165:405–413

    Article  CAS  Google Scholar 

  14. van de Wijngaert FP, Rademakers LH, Schuurman HJ, de Weger RA, Kater L (1983) Identification and in situ localization of the "thymic nurse cell" in man. J Immunol 130:2348–2351

    PubMed  Google Scholar 

  15. Flynn MA, Qiao M, Garcia C, Dallas M, Bonewald LF (1999) Avian osteoclast cells are stimulated to resorb calcified matrices by and possess receptors for leukotriene B4. Calcif Tissue Int 64:154–159

    Article  CAS  Google Scholar 

  16. Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL (1986) Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol 102:1164–1172

    Article  CAS  Google Scholar 

  17. Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99:1696–1705

    Article  CAS  Google Scholar 

  18. Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Koziol C, Konsek J, Zambonin-Zallone A, Schlesinger PH (1989) Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J Clin Invest 83:227–233

    Article  CAS  Google Scholar 

  19. Horne WC, Neff L, Chatterjee D, Lomri A, Levy JB, Baron R (1992) Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J Cell Biol 119:1003–1013

    Article  CAS  Google Scholar 

  20. Chambers TJ, Magnus CJ (1982) Calcitonin alters behaviour of isolated osteoclasts. J Pathol 136:27–39

    Article  CAS  Google Scholar 

  21. Chambers TJ, Chambers JC, Symonds J, Darby JA (1986) The effect of human calcitonin on the cytoplasmic spreading of rat osteoclasts. J Clin Endocrinol Metab 63:1080–1085

    Article  CAS  Google Scholar 

  22. Malgaroli A, Meldolesi J, Zallone AZ, Teti A (1989) Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J Biol Chem 264:14342–14347

    CAS  PubMed  Google Scholar 

  23. Zaidi M, Datta HK, Patchell A, Moonga B, MacIntyre I (1989) 'Calcium-activated' intracellular calcium elevation: a novel mechanism of osteoclast regulation. Biochem Biophys Res Commun 163:1461–1465

    Article  CAS  Google Scholar 

  24. Chambers TJ, McSheehy PM, Thomson BM, Fuller K (1985) The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 116:234–239

    Article  CAS  Google Scholar 

  25. Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology. Ther Nova 123:2600–2602

    CAS  Google Scholar 

  26. Matsumoto HN, Tamura M, Denhardt DT, Obinata M, Noda M (1995) Establishment and characterization of bone marrow stromal cell lines that support osteoclastogenesis. Endocrinology 136:4084–4091

    Article  CAS  Google Scholar 

  27. Itzstein C, van 't Hof RJ (2012) Osteoclast formation in mouse co-cultures. Methods Mol Biol 816:177–186

    Article  CAS  Google Scholar 

  28. Lee SK, Lorenzo J (2006) Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 18:411–418

    Article  CAS  Google Scholar 

  29. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  Google Scholar 

  30. Rucci N, Rufo A, Alamanou M, Capulli M, Del Fattore A, Ahrman E, Capece D, Iansante V, Zazzeroni F, Alesse E, Heinegård D, Teti A (2009) The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-kappaB inhibitor that impairs osteoclastogenesis. J Cell Biol 187:669–683

    Article  CAS  Google Scholar 

  31. Capulli M, Maurizi A, Ventura L, Rucci N, Teti A (2015) Effective small interfering RNA therapy to treat CLCN7-dependent autosomal dominant osteopetrosis type 2. Mol Ther Nucleic Acids 4:e248

    Article  CAS  Google Scholar 

  32. Chambers TJ, Revell PA, Fuller K, Athanasou NA (1984) Resorption of bone by isolated rabbit osteoclasts. J Cell Sci 66:383–399

    CAS  PubMed  Google Scholar 

  33. Teti A, Colucci S, Grano M, Argentino L, Zambonin Zallone A (1992) Protein kinase C affects microfilaments, bone resorption, and [Ca2+]o sensing in cultured osteoclasts. Am J Phys 263:C130–C139

    Article  CAS  Google Scholar 

  34. Collin-Osdoby P, Osdoby P (2012) RANKL-mediated osteoclast formation from murine RAW264.7 cells. Methods Mol Biol 816:187–202

    Article  CAS  Google Scholar 

  35. Dunford JE, Rogers MJ, Ebetino FH, Phipps RJ, Coxon FP (2006) Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases. J Bone Miner Res 21:684–694

    Article  Google Scholar 

  36. Murillo A, Guerrero CA, Acosta O, Cardozo CA (2010) Bone resorptive activity of osteoclast-like cells generated in vitro by PEG-induced macrophage fusion. Biol Res 43:205–224

    Article  CAS  Google Scholar 

  37. Amoui M, Suhr SM, Baylink DJ, Lau KHW (2004) An osteoclastic protein-tyrosine phosphatase may play a role in differentiation and activity of human monocytic U-937 cell-derived, osteoclast-like cells. Am J Physiol Cell Physiol 287:C874–C884

    Article  CAS  Google Scholar 

  38. Caselli GF, Mantovanini M, Gandolfi CA, Allegretti M, Fiorentino S, Pellegrini L, Melillo G, Bestini R, Sabbatici W, Anacardio R, Clavenna G, Sciortino G, Teti A (1997) Tartronates: a new generation of drugs affecting bone metabolism. J Bone Miner Res 12:972–981

    Article  CAS  Google Scholar 

  39. Prallet R, Male P, Neff L, Baron R (1992) Identification of a functional mononuclear precursor of the osteoclast in chicken medullary bone marrow cultures. J Bone Miner Res 7:405–414

    Article  CAS  Google Scholar 

  40. Reddy SV (2004) Regulatory mechanisms operative in osteoclasts. Crit Rev Eukaryot Gene Expr 14:255–270

    Article  CAS  Google Scholar 

  41. Neri T, Muggeo S, Paulis M, Caldana ME, Crisafulli L, Strina D, Focarelli ML, Faggioli F, Recordati C, Scaramuzza S, Scanziani E, Mantero S, Buracchi C, Sobacchi C, Lombardo A, Naldini L, Vezzoni P, Villa A, Ficara F (2015) Targeted gene correction in osteopetrotic-induced pluripotent stem cells for the generation of functional osteoclasts. Stem Cell Reports 5:558–568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof Rodolfo Amprino and Prof Gastone Marotti for introducing us into the bone field, to Prof Pier Carlo Marchisio for the instrumental collaboration in the discovery of the podosomes, and to Prof Steven L. Teitelbaum and Prof Arnold J. Kahn, who believed in our chicken osteoclast isolation method and made it possible to disseminate this knowledge to the bone community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Teti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rucci, N., Zallone, A., Teti, A. (2019). Isolation and Generation of Osteoclasts. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics